期刊文献+

改进的K-Means聚类算法在保险客户信用分析中的算法实现 被引量:2

Algorithm Realization of Improved K-Means Clustering Algorithm in Credit Analysis of Policyholders
下载PDF
导出
摘要 针对保险业对客户信息的分析中缺乏考虑客户信用分析的问题,根据聚类分析算法理论和保险公司客户数据库特点,进一步对K-means聚类算法在大样本环境下初始聚类中心的选取提出有效改进,同时选取一家财产保险公司的客户信用数据,来探讨聚类算法在保险客户信用分析中的应用. In order to solve the problem that the analysis of policyholders' information lack of considering to analyse policyholders' credit, this paper gives a kind of K-means clustering algorithm that further improved initial center of cluster on environment condition for large sample in terms of cluster analysis theory and trait of policyholders' database, investigates that the algorithm excavates the practice application of policyholders' credit analysis through clients' datum of a property insurance company.
作者 宋加升 陈琰
出处 《哈尔滨理工大学学报》 CAS 北大核心 2009年第1期116-119,共4页 Journal of Harbin University of Science and Technology
关键词 聚类分析 K—means聚类算法 保险客户 cluster analysis K-means clustering algorithm policyholder
  • 相关文献

参考文献4

二级参考文献7

  • 1田启明,王丽珍,尹群.基于网格距离的聚类算法的设计、实现和应用[J].计算机应用,2005,25(2):294-296. 被引量:12
  • 2La Jolla. Alternatives to the k-means algorithm that find better clustering. Department of Computer Science and Engineering,University of California,San Diego,CA92093
  • 3Kaufan L,Rousseeuw PJ.Finding Groups in Data:an Introduction to Cluster Analysis[M].New York:John Wiley & Sons, 1990
  • 4Guha S,Rastogi R,Shim K.CURE:an efficient clustering algorithm for large databases[C].In:Haas LM,Tiwary A eds.Proceedings of the ACM SIGMOD International Conference on Management of Data,Seattle: ACM Press, 1998: 73~84
  • 5Agrawal R,Gehrke J,Gunopolos D et al. Automatic subspace clustering of high dimensional data for data mining application[C].In:Haas LM,Tiwary A eds. Proceedings of the ACM SIGMOD International Conference on Management of Data, Seattle: ACM Press, 1998: 94~105
  • 6李存华,孙志挥.一类数据空间网格化聚类算法的均值近似方法(英文)[J].软件学报,2003,14(7):1267-1274. 被引量:15
  • 7胡泱,陈刚.一种有效的基于网格和密度的聚类分析算法[J].计算机应用,2003,23(12):64-67. 被引量:12

共引文献63

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部