期刊文献+

一种目标跟踪中的模糊核直方图 被引量:1

A fuzzy kernel histogram for object tracking
下载PDF
导出
摘要 针对目标模型内的背景像素造成目标跟踪定位偏差的问题,提出了一种适合于目标跟踪的模糊核直方图。通过在核直方图中引入模糊隶属度,可降低背景像素对目标特征的影响。另外,研究了模糊隶属度函数,根据中心-周围方法提取背景特征,并给出了确定模糊隶属度函数的两种策略,即比率策略和差分策略。在比率策略中采用对数似然函数技术,而在差分策略中采用目标特征与背景特征的差分技术。实验表明,基于比率策略的目标跟踪更适合于场景简单的情形,而基于差分策略的目标跟踪适合于场景复杂的情形。 To resolve the problem that the background pixels in an object model induce localization errors in object tracking, a fuzzy kernel histogram was presented for object tracking. The fuzzy membership degree was introduced in the fuzzy kernel histogram for reducing the localization errors in object tracking produced by background pixels. Moreover, the fuzzy membership functions were studied, and two strategies, the ratio strategy and difference strategy, were given for determining the fuzzy membership functions after extracting the background feature using a "center-surround" approach. The log-like- lihood function was adopted in ratio strategy, while a difference technique was introduced in difference strategy. The experimental results show that the object tracking based on the ratio strategy is fit for the case of simple scene, while the object tracking based on the difference strategy is fit for the case of complex scene.
出处 《高技术通讯》 CAS CSCD 北大核心 2009年第2期174-180,共7页 Chinese High Technology Letters
基金 国家自然科学基金(60234030,60773110) 国家基础研究(A1420060159)资助项目
关键词 mean SHIFT 模糊核直方图 目标跟踪 目标模型 mean shift, fuzzy kemel histogram, object tracking, object model
  • 相关文献

参考文献12

  • 1Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25(5):564-577
  • 2Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, South Carolina, USA, 2000. 2. 142-149
  • 3Comaniciu D. An algorithm for data-driven bandwidth selection. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25 (2) : 1-8
  • 4彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 5Yang C, Duraiswami R, Davis L. Efficient mean-shift tracking via a new similarity measure. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, California, USA, 2005. 1. 176-183
  • 6Zhu Z, Ji Q, Fujimura K, et al. Combining kalman filtering and mean shift for real time eye tracking under active IR illumination. In: Proceedings of the 16th International Conference on Pattern Recognition. New York: IEEE Press, 2002. 4. 318-321
  • 7Jeong M, You B, Oh Y, et al. Adaptive mean-shift tracking with novel color model. In: Proceedings of the IEEE International Conference on Mechatronics & Automation, Niagara Falls,Canada, 2005. 3. 1329-1333
  • 8Xu R Y D, Allen J G, Jin J S. Robust mean shift tracking with extended Fast cotour thresholding. In: Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing. New York: IEEE Press, 2004. 542-545
  • 9Collins R T, Liu Y, Leordeanu M. Online selection of discriminative tracking features. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(10) : 1631-1643
  • 10冯祖仁,吕娜,李良福.基于最大后验概率的图像匹配相似性指标研究[J].自动化学报,2007,33(1):1-8. 被引量:22

二级参考文献25

  • 1[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 2[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 3[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 4[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 5[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.
  • 6[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575.
  • 7[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240.
  • 8[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857.
  • 9[9]Hu W, Wang S, Lin RS, Levinson S. Tracking of object with SVM regression. In: Jacobs A, Baldwin T, eds. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2001. 240-245.
  • 10[10]Mohammad GA. A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Trans. on Image Processing, 2001,10(4):626-533.

共引文献183

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部