期刊文献+

概念格的外延覆盖约简 被引量:10

Covering Reduction of Extents in Concept Lattices
下载PDF
导出
摘要 概念格是数据分析与知识发现的一种有效的形式化工具。知识发现的一个重要课题是知识约简,因此,寻求简单有效的属性约简方法是很有必要的。近年来,概念格属性约简方法的研究得到了很多学者的关注,提出了多种形式的概念格属性约简方法。本文利用形式背景的外延基本元,提出了概念格的外延覆盖约简的概念。讨论了这种约简与已有的几种约简之间的关系。证明了外延覆盖约简等价于粒约简,且概念格属性协调集一定是外延覆盖协调集。给出了外延覆盖协调集的判定定理,借鉴粗糙集属性约简的思想,得到了利用辨识矩阵计算全部外延覆盖约简的Boole方法。 Concept lattice is an effective tool for data analysis and knowledge discovery. Since one of the key problems of knowledge discovery is knowledge reduction, it is necessary to search for a simple and effective approach for knowledge reduction. In recent years, more and more attention has been paid to attribute reduction in the study of concept lattices, and many types of approaches for reducing the redundant attributes have been proposed. In this paper, we develop a novel approach to attribute reduction by defining a concept of basic units of extents in a formal context. A concept of covering reduction of extents in concept lattices is then introduced. The relationships among some existing concepts of reduction are also analyzed. It is proved that covering reducts of extents are equivalent to granule reducts, and attribute consistent sets of a concept lattice must be covering consistent sets. Some judgment theorems for covering consistent sets are proposed and proved. By extending the idea of knowledge reduction in rough set theory, a Boolean approach for calculating all covering reducts of a context is formulated via the use of discernibility function.
出处 《工程数学学报》 CSCD 北大核心 2009年第1期8-16,共9页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(60773174) 河北省自然科学基金(A2006000129) 河北师范大学重点基金(L2005Z01)
关键词 形式背景 概念格 外延 约简 协调集 formal context concept lattice extent reduction consistent set
  • 相关文献

参考文献16

  • 1Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11:341-356.
  • 2Wille R. Restructuring lattice theory: an approach based on hierarchies of concepts[C]// Rival I (Ed.), Ordered Sets. Reidel, Dordrecht-Boston, 1982:445-470.
  • 3Skowron A. Boolean reasoning for implication rules generation[C]//Komorowski J, Ras Z.(Eds.), Method- ologies for Intelligent Systems. Lecture Notes in Artificial Intelligence 689, Springer-Verlag, Berlin, 1993: 295-305.
  • 4Skowron A, Rauszer C. The discernibility matrices and functions in information systems[C]// Slowinski R (Ed.), Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory. Kluwer Academic Publishers, Boston, 1992:331-362.
  • 5Beynon M. Reducts within the variable precision rough sets model: a further investigation[J]. European Journal of Operational Research, 2001, 134:592-605.
  • 6梁吉业,曲开社,徐宗本.信息系统的属性约简[J].系统工程理论与实践,2001,21(12):76-80. 被引量:135
  • 7Mi J-S, Wu W-Z, Zhang W-X. Approaches to knowledge reductions based on variable precision rough sets model[J]. Information Sciences, 2004, 159:255-272.
  • 8Wu W-Z, Zhang W-X, Li H-Z, Mi J-S. Knowledge reduction in random information systems via Dempster- Shafer theory of evidence[J]. Information Sciences, 2005, 174(3-4): 143-164.
  • 9Ganter B, Wille R. Formal Concept Analysis. Mathematical Foundations[M]. Berlin: Springer, 1999.
  • 10Valtchev P, Missaoui R, Godin R. Formal concept analysis for knowledge discovery and data mining: the new challenges[C]// Eklund P(Ed.): ICFCA 2004. Lecture Notes in Artificial Intelligence 2961, Springer- Verlag, Berlin, 2004:352-371.

二级参考文献33

  • 1曾黄麟.粗集理论及其应用(一)[J].四川轻化工学院学报,1996,9(1):18-28. 被引量:41
  • 2Wille R. Restructuring lattice theory: an approach based on hierarchies of concepts[A]. In: Ivan Rival,editor, Ordered sets[C]. Reidel: Dordrecht-Boston, 1982;445-470.
  • 3Oosthuizen G D. The Application of Concept Lattice to Machine Learning[R]. Technical Report, University of Pretoria, South Africa, 1996.
  • 4Ho T B. Incremental conceptual clustering in framework of Galois Lattice[A]. In: Lu H et al. eds. KDD:Techniques and Applications[C]. World Scientific, 1997;49-64.
  • 5Kent R E et al. Digital Libraries, Conceptual knowledge systems and the Nebula interface[R]. Technical Report, Univerxityof Arkansas, 1995.
  • 6Yao Y Y et al. Concept lattices in rough set theory[A]. Proceeding of 2004 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2004)[C], Dick S et al. (Eds.), IEEE Catalog Number: 04TH8736, June 27-30, 2004;796-801.
  • 7Yao YY. Constructive and algebraic methods of theory of rough set approximation[J]. Information Sciences,1998;1:239-259.
  • 8Yao Y Y. Two views of the theory of rough sets in finite universes[J]. International Journal of Approximate Reasoning, 1996;15:291-317.
  • 9Wolff K E.A comceptual view of knowledge bases in rough set theory[C]// Lecture Notes in Computer Science.Vol.2005,Spring-Berlin,2001:220-228
  • 10Pawlak Z.Rough sets:Theoretical Aspects of Reasoning about Data[M].Boston:Kluwer Academic Publishers,1991

共引文献334

同被引文献58

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部