期刊文献+

介质阻挡放电氧化降解木质素磺酸钠的动力学研究 被引量:3

Kinetics of sodium lignosulfonate oxidation degradation by dielectric barrier discharges
下载PDF
导出
摘要 为了有效地处理难生物降解的造纸废水,采用气相介质阻挡放电产生氧化性物质,对木质素磺酸钠进行了氧化降解研究。在不同操作条件下,对其降解动力学及矿化程度进行了研究。结果表明,介质阻挡放电能有效地降解木质素磺酸钠,其氧化降解反应遵循准一级动力学反应。当峰值电压为20 kV,被水蒸气饱和的空气为气源,流量为7 L/m in时,氧化处理60 m in后,木质素磺酸钠降解率达到70%。其速率常数K随峰值电压、气源、气体流量和木质素磺酸钠的初始浓度的变化而不同。气体流量越大,木质素磺酸钠的初始浓度越低,速率常数K越大,降解效果越好。随着处理时间的增加,氧化性物质能将部分木质素磺酸钠矿化使溶液TOC降低,当被水蒸气饱和的空气作为气源时,氧化处理120m in,21.38%的TOC被去除。 Degradation kinetics and mineralizing of sodium lignosulfonate was examined by utilizing reactive species generated from the gas phase dielectric barrier discharge (DBD) reactor. Effects of various parameters such as gas flow rate, applied voltage, gas sources and initial sodium lignosulfonate concentration on the degra- dation kinetics of sodium lignosulfonate were investigated. The experimental data show that the present DBD system is very effective on degradation of lignosulfonate, and the degradation reaction of sodium lignosulfonate in the plasma reactor is a pseudo first order reaction. An aqueous solution of 100 mg/L lignosulfonate is about 70% degraded following 60 min treatment at a 20 kV voltage and 7L/min gas flow rate. Applied voltage, gas flow rate, gas source and initial sodium lignosulfonate concentration were observed to affect the degradation kinetics of sodium lignosulfonate. Rate constant(K) of degradation increases with increasing the gas flow rate or decreasing the initial sodium lignosulfonate concentration. Furthermore, the higher mineralization rate is obtained when humid air (RH 100% ) is used as a gas source. About 21.38% of the initial TOC can be removed only in 120 min treatment.
出处 《环境工程学报》 CAS CSCD 北大核心 2009年第3期442-446,共5页 Chinese Journal of Environmental Engineering
基金 乐山师范学院科研项目
关键词 介质阻挡放电 氧化降解 木质素磺酸钠 dielectric barrier discharge oxidation degradation sodium lignosulfonate
  • 相关文献

参考文献8

二级参考文献16

  • 1孙守亮.草浆黑液超滤--动态磁吸附处理技术的研究.1998年博士研究生学位论文(华南理工大学)[M].,..
  • 2(美)中西香尔P 吴平平等(译).红外吸收光谱(第二版)[M].北京:中国化学会,1981..
  • 3DAGLEY S,EVANS W C,RIBBONS D W.New pathways in the oxidative metabolism of aromatic compounds by micro-organisms[J].Nature,1960,188:560-566.
  • 4GARCIA S,LATGE J P,PREVOST M C,et al.Wood degradation by white rot fungi:cytochemical studies using lignin peroxidase-immunoglobulin-gold complexes[J].Applied and Environmental Microbiology,1987,53 (10):2384-2387.
  • 5MIRANDA M A,AMAT A M,ARQUES A.Abatement of the major contaminants present in olive oil industry wastewaters by different oxidation methods:ozone and/or UV radiation versus solar light[J].Water Science and Technology,2001,44 (5):325-330.
  • 6TEZCANLI-GUVER G,INCE N H.Degradation and toxicity reduction of textile dyestuff by ultrasound[J].Ultrasonics Sonochemistry,2003,10 (4/5):235-240.
  • 7BELTRAN-HEREDIA J,TORREGROSA J,DOMINGUEZ J R,et al.Kinetics of the oxidation of p-hydroxybenzoic acid by the H2 O2/UV system[J].Industrial & Engineering Chemistry Research,2001,40 (14):3104-3108.
  • 8VOGNA D,MAROTTA R,NAPOLITANO A,et al.Advanced oxidation chemistry of paracetamol.UV/H2 O2-induced hydroxylation/degradation pathways and N-15-aided inventory of nitrogenous breakdown products[J].Journal of Organic Chemistry,2002,67 (17):6143-6151.
  • 9EINSCHLAG F S G,LOPEZ J,CARLOS L,et al.Evaluation of the efficiency of photodegradation of nitroaromatics applying the UV/H2 O2 technique[J].Environmental Science & Technology,2002,36 (18):3936-3944.
  • 10Limosin D,Pierre G,et al. Holzforschung . 1985

共引文献18

同被引文献39

  • 1郑光明,朱承驻,张仁熙,张建良,侯惠奇.平行板双介质阻挡放电处理水相中氯酚的脱氯机理[J].环境科学学报,2004,24(6):962-968. 被引量:11
  • 2任兆杏,丁振峰.低温等离子体技术[J].自然杂志,1996,18(4):201-207. 被引量:57
  • 3Logan B E, Hame]ers Bert Rozendal R, el al. Microbial fuel cells: Methodology and technology[J]. Environmental Science and Technology, 2006,40(17):5181--5192.
  • 4Pant D. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresour Technol, 2009 10.17.
  • 5Dunne W. The production of fuels from biological substrates[J]. International Journal of Energy Research. 1980,18(2):71--78.
  • 6VillAr kraft oxide 1997 J C Caperos A lignin to phenol GArci& ochoA F OxidAtion c derivatives with Nitrobenzene of hardwood And copper Technology,.
  • 7Lovley D R, Phillips metabolism: organic E J P Novel mode of carbon oxidation coup microbial energy ed to dJssimHs-- tory reduction of iron or manganese[J]. App] Environ Microbio i988 54(6):1472 1480.
  • 8Liu H, Logan B E. Electricity generation using an air-cathode single-chamber microbial fuel cell in the presence and ab--sence of ~ proton exchange membrane[J]. Environ Sci Techno, 2004 38(] 4):4040-4046.
  • 9Rabaey K, Boon N, SiciJiano S D, et al. Biofuel cells select for microbial consortia that self--mediate eFectron transfer[J]. Appl Environ Microbiol, 2004,70(9):5575-5582.
  • 10LL!O H P, kiu G L, Zhang R D, eta]. Phenol degrada tion #n mFcrobial fuel cel/s[J]. Chemical En&neering Journal, 2009, 4Y(2 5):259-264.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部