期刊文献+

AUV组合导航系统中H_∞滤波技术 被引量:2

H_∞ Filter Technology in Integrated Navigation System of AUV
下载PDF
导出
摘要 为了提高自主水下航行器(AUV)组合导航系统精度,选择了捷联式惯性导航系统(SINS)、多普勒速度声纳(DVS)以及地形匹配导航系统(TAN)作为AUV组合导航系统导航传感器,建立了AUV组合导航系统的状态模型和导航传感器观测模型,运用了一种基于径向基函数(RBF)神经网络进行H∞滤波信息分配的信息融合方法,并进行了计算机软件仿真。仿真结果表明,在有色噪声情况下,AUV组合导航系统的导航姿态、速度和位置精度得到了提高,有效地克服了传统滤波容易发散的缺点,提高了AUV组合导航系统的容错性能和导航精度。 To improve the autonomous underwater vehicle (AUV) navigation accuracy, strap-down inertial navigation system (SINS), Doppler velocity sonar (DVS) and terrain aided navigation (TAN) were adopted in the AUV integrated navigation system. Mathematical models of the AUV integrated navigation system and an observation model of the chosen navigation sensors were built according to the system simulation data. An improved filter based on radial basis function (RBF) neural network for adjusting the information sharing factors was designed and implemented in the AUV integrated navigation system. Simulation resuits show that the navigation accuracy is improved obviously with the specified sensors and H∞ filter in the ease of colored noise. The novel integrated navigation system can effectively suppress the divergence of the filter, improve the fault tolerance ability, and greatly raise the navigation accuracy.
出处 《鱼雷技术》 2009年第1期14-17,共4页 Torpedo Technology
基金 国防科技重点实验室基金资助项目
关键词 自主水下航行器(AUV) 捷联式惯性导航系统(SINS) 多普勒速度声纳(DVS) 地形匹配导航系统(TAN) H∞滤波 组合导航系统 autonomous underwater vehicle (AUV) strap-down inertial navigation system (SINS) Doppler velocity sonar (DVS) terrain aided navigation (TAN) H∞ filter integrated navigation system
  • 相关文献

参考文献4

二级参考文献16

共引文献19

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部