期刊文献+

空冷燃料电池最佳温度及模糊增量PID控制 被引量:28

Temperature Optimization and Fuzzy Incremental PID Control for Air-breathing Proton Exchange Membrane Fuel Cell Stack
原文传递
导出
摘要 提出用空冷型质子交换膜燃料电池堆为机器人驱动电机供给电能。基于对热传递的分析,建立空冷型燃料电池温度场热模型方程。通过实验得到不同电流和电压负载时可使燃料电池输出功率最大的最佳温度值,以及不同电堆温度下,电池可稳定输出的功率情况。设计模糊增量PID温度控制算法,利用模糊规则推理来优化调节PID参数,建立加权平均去模糊化方法。给出电堆温度测控系统实现方案和控制器关键硬件选型。在自制实验台上,针对100W燃料电池开展实验研究,用风扇调节电堆温度。温度控制实现±0.5℃精度。实验结果证明最佳温度合理,模糊增量PID控制满足电堆温度控制要求,适用于缓慢的负载变化。 Energy supplying system is important to autonomous robots' application. An energy supplying method using air-breathing proton exchange membrane (PEM) fuel cell was proposed for robot. Based on the energy conversation and thermal exchange analysis, a thermal dynamic model was developed in order to analyze the temperature control method. Experiments were done using the independent developed test-bed with 100 W stack and shows that stack inside temperature is crucial to output power of stack. Based on experiment data, the optimal temperature under various currents and voltages of load were given in curves, and the steady output power under various temperatures was also presented. Considering varying parameters and random noise, the fuzzy incremental PID control algorithm was designed for temperature control, and PID parameters were adjusted using IF-THEN fuzzy rules. Variance weighted averaging algorithm was used to anti-fuzzy. Temperature control system was fabricated using MCU, K-thermocouple and fans. Control tests results indicate that optimal temperature is right, and the controller is applicable with temperature variations less than ±0.5 ℃. Inside temperature control is a valid method for stack output power following slow load change.
出处 《中国电机工程学报》 EI CSCD 北大核心 2009年第8期109-114,共6页 Proceedings of the CSEE
基金 浙江省教育厅项目(20070673)
关键词 机器人 燃料电池 温度控制 模糊控制 微控制器 robot fuel cell temperature control fuzzy control micro control unit
  • 相关文献

参考文献21

  • 1Larminie J, Dicks A. Fuel cell systems explained[M]. 2th Edition. Weinheim: John Wiley&SonsLimited, 2003: 2-3.
  • 2Wilhelm A, Surgenor B W, Pharoah J D. Evaluation of a micro fuel cell as applied to a mobile robot[C]. 2005 IEEE International Conference on Mechatronics & Automation, Negara Falls, Canada, 2005: 32-36.
  • 3戴士杰,栗少云,周国香,岳宏.移动机器人能源自治研究与进展[J].河北工业大学学报,2007,36(1):7-12. 被引量:3
  • 4Sedghisigarchi K, Feliachi A. Impact of fuel cells on load-frequency control in power distribution system[J]. IEEE Transactions on Energy Conversion, 2006, 21(3): 250-256.
  • 5Nguyen P T, Berning T, Djilali N. Computation model of a PEM fuel cell with serpentine gas flow channels[J]. PowerSources, 2004, 130(1-2): 149-157.
  • 6Muller E A, Stefanopoulou A G. Analysis, modeling, and validation for the thermal dynamics of a PEM fuel cell system[C]. Proc 3rd International Conference on Fuel Cell Science, Engineering, and Technology. Michigan, ASME, 2005: 389-404.
  • 7Fagley J, Gu Wenbin, Whitehead L. Thermal modeling of a PEM fuel cell[C]. Proc 2nd International Conference on Fuel Cell Science, Engineering and Technology, New York, ASME, 2004: 141-149.
  • 8贠海涛,孙泽昌,万钢,赵玉兰.燃料电池汽车动力系统动态数学模型[J].系统仿真学报,2007,19(4):710-712. 被引量:3
  • 9Wang C S, Nehrir M H, Shaw S R. Dynamic models and model validation for PEM fuel cells using electrical circuits[J]. Energy Conversion IEEETransactions, 2005, 20(2): 442-451.
  • 10李曦,曹广益,朱新坚.质子交换膜燃料电池电堆温度特性的模糊建模[J].上海交通大学学报,2005,39(S1):187-188. 被引量:28

二级参考文献94

共引文献187

同被引文献241

引证文献28

二级引证文献201

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部