期刊文献+

基于DWT-SVD的图像盲水印研究 被引量:2

Research of image bind watermarking based on DWT-SVD
下载PDF
导出
摘要 提出了一种新的基于离散小波变换(DWT)与奇异值分解(SVD)相结合的数字图像水印算法。该算法将原始图像作小波分解并将小波分解得到的低频子带进行分块,对每一块进行奇异值分解后,选取每块中最大的奇异值通过量化的方法嵌入经过Arnold置乱后水印信息。水印的提取不需要原始图像,但受到密钥的限制,不知道密钥的人无法正确地恢复数字水印。实验结果表明,该算法具有较好的不可感知性、鲁棒性和安全性。 In this paper, a new watermarking algorithm based on discrete wavelet transform (DWT) of image and singular value decomposition (SVD) is presented. After decomposing the original image into four bands, the SVD is applied to the blocks of the low sub-band. To improve the security the watermark is scrambled by Arnold transform, and then is embedded into the largest singular value of every block. The watermark can be extracted without original image, among which a person who does not know the secret key cannot correctly retrieve the watermark. Experimental results indicate that the performance of the proposed watermarking algorithm is invisible, robust and secure.
作者 陶锋
出处 《信息化纵横》 2009年第5期62-65,共4页
关键词 离散小波变换 奇异值分解 盲水印 图像置乱 鲁棒性 DWT SVD blind watermarking image scrambling robustness
  • 相关文献

参考文献3

二级参考文献24

  • 1陈大新.矩阵理论(修订版)[M].上海:上海交通大学出版社,2000-07..
  • 2Petitcolas F A P, Anderson R J, Kuhn M G. Attacks on copyright marking systems [A]. In: Proceedings of Workshop Information Hiding[C]. Portland, OR, USA, 1998: 218-238.
  • 3Herley C. Why watermarking is nonsense [J]. IEEE Signal Processing Magazine, 2002, 19(5) : 10-11.
  • 4Braudaway G W, Minter F. Automatic recovery of invisible image watermarks from geometrically distorted image[A]. In:Proceedings of SPIE Security and Watermarking of Multimedia Contents Ⅱ [C]. San Jose, CA, USA, 2000:74-81.
  • 5Ruanaidh J J. K. O. , Pun T. Rotation, scale and translation invariant spread spectrum digital image watermarking[J]. Signal Processing, 1998, 66(3): 303-317.
  • 6Andrews H, Patterson C. Singular value decomposition(SVD)image coding[J]. IEEE Transactions on Communications, 1976,24(4) : 425-432.
  • 7Liu R, Tan T. An SVD-based watermarking scheme for protecting rightful ownership [J]. IEEE Transactions on Multimedia, 2002,4(1) : 121-128.
  • 8Leon S J. Linear Algebra with Applications [M]. New York:Macmillan, 1986: 343-356.
  • 9Horn R A, Johnson C R. Matrix Analysis [M]. Cambridge:Cambridge University, 1985 : 431-432.
  • 10Miller M L, Bloom J A. Computing the probability of false watermark detection [A]. In: Proceedings of 3rd International Workshop Information Hiding [C], Dresden, Germany, 1999:146-158.

共引文献297

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部