期刊文献+

恒压运行时混凝动态膜的形成及对污染物的去除 被引量:3

Formation of Coagulation Dynamic Membrane and Pollutants Removal at Constant Pressure
下载PDF
导出
摘要 研究了污染河水混凝絮体形成动态膜的过程及其对污染物的去除效果,以无纺布为附着基材,受污染河水为研究对象,聚合氯化铝为混凝剂,通量稳定作为动态膜形成的依据,通过运行时间(t)、累计出水体积(V)及t/V、通量之间的关系研究动态膜的成膜过程及对污染物的去除效果.结果表明,4和8cm水头运行时动态膜形成时间分别为120和70min,成膜后通量基本一致.动态膜的形成首先是小于或等于基材孔径的颗粒被截留,然后为小于基材孔径的颗粒在膜内部通道堵塞或沉积.污染物去除效果COD去除率约为75%~71%,总磷去除率约为81%,出水粒度分布表明动态膜对颗粒物有较好的截留作用. Based on the relationship of operation time (t), accumulative effluent volume (V), t/V, and flux rate, the dynamic membrane formation and pollutants removal were investigated. In this reactor, contaminated river water was treated when non-woven fabric material was used as support medium and polyaluminum chloride selected as an effective coagulant. The results showed that the dynamic membrane formation time was 120 min at 4 cm water head drop, and 70 min at 8 cm one, the stabilized flux was similar. In the formation of dynamic membrane, the support medium was firstly covered with bigger particles than its aperture, then the jam and sedimentation of smaller particles in the cores. The pollutant removal showed that COD removal rate was 75%~71%, and the total P about 81%, the dynamic membrane had better particle removal capability.
出处 《过程工程学报》 CAS CSCD 北大核心 2009年第1期33-37,共5页 The Chinese Journal of Process Engineering
基金 济南市科技局重点项目(编号:061075)
关键词 混凝 动态膜 污染河水 形成过程 无纺布 污染物去除 coagulation dynamic membrane contaminated river water formation process non-woven fabric pollutant removal
  • 相关文献

参考文献11

  • 1Lee J, Aim W Y, Lee C H. Comparison of the Filtration Characteristics between Attached and Suspended Growth Microorganisms in Submerged Membrane Bioreactor [J]. Water Res., 2001, 35(10): 2435-2445.
  • 2范彬,黄霞,栾兆坤.出水水头对自生生物动态膜过滤性能的影响[J].环境科学,2003,24(5):65-69. 被引量:25
  • 3范彬,黄霞,文湘华,于妍.微网生物动态膜过滤性能的研究[J].环境科学,2003,24(1):91-97. 被引量:46
  • 4Kiso Y, Jung Y J, Ichinari T. Wastewater Treatment Performance of a Filtration Bio-reaetor Equipped with a Mesh as a Filter Material [J]. Water Res., 2000, 34(17): 4143-4150.
  • 5Al-Malack M H, Anderson G K. Formation of Dynamic Membranes with Crossflow Microfiltration [J], J. Membr. Sci., 1996, 112: 287-296.
  • 6Tanny G B. Dynamic Membranes in Ultrafiltration and Reverse Osmosis [J]. Sep. Purif. Methods, 1978, 7(2): 183-220.
  • 7Visvanathan C, Ben A R. Studies on Colloidal Membrane Fouling Mechanisms in Crossflow Micriofiltration [J]. J. Membr. Sci., 1989, 45(1/2): 3-15.
  • 8Kuberkar V T, Davis R H. Modeling of Fouling Reduction by Secondary Membranes [J]. J. Membr. Sci., 2000, 168(1/2): 243-258.
  • 9Altmann J, Ripperger S. Particle Deposition and Layer Formation at the Crossflow Mierofiltration [J]. J. Membr. Sci., 1997, 124: 119-128.
  • 10Hermans P H, Bredee H L. Zur Kenntniss der Filtrationsgesetze [J]. Rec. Trav. Chim., 1935, 54: 680-700.

二级参考文献13

  • 1国家环保局.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1989.108,354.
  • 2Bin Fan, Xia Huang. Characteristics of Self-Forming Dynamic Membrane Coupled with Bioreactor for Municipal Wastewater Treatment. Environ. Sci. Technol. ,2002,36 : 5245.
  • 3Altmann J, Ripperger S. Particle deposition and layer formation at the crossflow microfiltration. J. Mem. Sci., 1997,124: 119~128.
  • 4Chen V, Fane A G, Madaeni S, Wenten I G. Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation. J Mem. Sci. ,1997, 125: , 109~122.
  • 5Aimar P, Field R W. Limiting flux in membrane separations: a model based on the viscosity dependency of the mass transfer coefficient. Chem. Eng. Sci., 1992, 47 (3): 576~586.
  • 6Gesan-Guiziou G, Boyaval E, Daufin G. Critical stability conditions in crossflow microfiltration of skimmed milk: transition to irreversible deposition. J Mem. Sci. , 1999, 158:211~222.
  • 7Bouhabila El H, Aim R G, Buisson H. Fouling characteriza tion in membrane bioreactors. Sep. Purif. Technol., 2001,22~23: 123~132.
  • 8Barker D J, Stucky D C. A review of soluble microbial products (SMP) in wastewater treatment systems. Wat. Res. ,1999, 33(14): 3063~3082.
  • 9Wisniewski C, Grasmick A . Floc size distribution in a membrane bioreactor and consequences for membrane fouling.Colloid. Surf., 1998, 138: 403~411.
  • 10Nagoka H, Ueda S, Miya A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Wat. Sci. Technol. , 1996, 34(9): 165~172.

共引文献57

同被引文献59

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部