期刊文献+

基于变分辨率的自适应窗口目标跟踪方法研究 被引量:3

Adaptive window object tracking based on variable resolution
下载PDF
导出
摘要 针对视觉跟踪中运动目标的大小也随之改变这一问题,提出一种基于变分辨率的自适应窗口目标跟踪方法。在最大后验概率视觉跟踪算法基础上,分析了运动目标窗口内外框上的后验概率贡献指标,建立了自适应窗口调整目标尺度的数学模型。当运动目标尺寸变化时,其分辨率也相应变化,为了保证跟踪的实时性和效率,采用变分辨率的特征统计采样方法。在对运动目标实现自适应窗口的跟踪时,特征统计的分辨率也随之改变,对尺寸越大的运动目标尺度赋予更低的分辨率,从而实现基于变分辨率的自适应窗口目标跟踪。 This paper presents an adaptive window object tracking method based on variable resolution. It copes with size changing object during visual tracking. For the visual tracking algorithm based on maximum posterior probability, we analyze the posterior probability contribution on the inside and outside panes of the object window, and build a mathematical model for adjusting object size with an adaptive window. Since the resolution changes according to the size of the object, this thesis uses a statistical sampling method of the feature by variable resolution. The resolution of the statistical feature is correspondingly changed in object tracking with an adaptive window. The resolution of a larger object is decreased, which realizes an object tracking method with adaptive window based on variable resolution.
出处 《应用光学》 CAS CSCD 北大核心 2009年第2期177-182,共6页 Journal of Applied Optics
关键词 视觉跟踪 自适应窗口 变分辨率 最大后验概率 vision tracking adaptive window variable resolution maximum posterior probability
  • 相关文献

参考文献8

  • 1陆培国,寿少峻.舰载光电系统高精度跟踪控制技术[J].应用光学,2006,27(6):476-484. 被引量:23
  • 2陈东炎,张玘,王艳玲,罗诗途.图像跟踪系统中机动目标预测的实现[J].应用光学,2007,28(1):33-37. 被引量:12
  • 3COMANICIU D, RAMESH V, MEER P. Kernelbased object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003,25(5):564-577.
  • 4COMANICIU D. An algorithm for data-driven bandwidth selection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003, 25 (2): 281-288.
  • 5PENG Ning-song, YANG Jie, CHEN Jia-xin. Kernel-bandwidth adaptation for tracking object changing in size[C]//International Conference on Image Analysis and Recognition, Part II. Berlin: Springer : 2004, 581-588.
  • 6COLLINS R T. Mean-shift blob tracking through scale space [J] . IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2003,2, (II) :234-240.
  • 7COMANICIU D, RAMESH V, MEER P. The variable bandwidth mean shift and data-driven scale selection [J]. IEEE International Conference on Computer Vision, 2001,1 : 438-445.
  • 8冯祖仁,吕娜,李良福.基于最大后验概率的图像匹配相似性指标研究[J].自动化学报,2007,33(1):1-8. 被引量:22

二级参考文献25

  • 1罗诗途,王艳玲,张玘,罗飞路.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,13(1):95-103. 被引量:28
  • 2吉翠萍,陈勇,雷宏杰,韩宗虎,陈林峰.激光陀螺捷联惯性导航系统误差分析及仿真计算[J].应用光学,2005,26(3):5-8. 被引量:3
  • 3刘宇.光电技术在轻武器中的新应用[J].应用光学,2006,27(4):289-292. 被引量:12
  • 4Lee K W, Ryu S W, Lee S J, Park K T. Motion based object tracking with mobile camera. Electronics Letters, 1998, 34(3): 256-258
  • 5Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International Journal of Computer Vision, 1988, 1(4): 321-331
  • 6Horn B K P, Schunk B G. Determining optical flow. Artificial Intelligence, 1981, 17(13): 185-203
  • 7Smith S M, Brady J M. ASSET-2: Real-time motion segmentation and shape tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 814-820
  • 8Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850-863
  • 9Ghafoor A, Iqbal Ft N, Khan S A. Modified chamfer matching algorithm. Lecture Notes in Computer Science, Springer, 2003, 2690: 1102-1106
  • 10Malki J, Mascarilla L, Zahzah E H, Boursier P. Directional relations composition by orientation histogram fusion. In:Proceedings of 15th International Conference on Pattern Recognition. Barcelona, Spain. IEEE, 2000. 3:758-761

共引文献51

同被引文献27

  • 1冯祖仁,吕娜,李良福.基于最大后验概率的图像匹配相似性指标研究[J].自动化学报,2007,33(1):1-8. 被引量:22
  • 2HU Wei-ming, TAN Tie-niu, WANg Liang, et al. A survey on visual surveillance of object motion and behaviours[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C, 2004, 34 (3) : 334-352.
  • 3YING W. Robust visual tracking by integrating mul- tiple cues based on co-inference learning[J]. Interna- tional Journal on Computer Vision, 2004, 58 ( 1 ) :55-71.
  • 4ISARD M, BLAKE A. CONDENSATION - condi- tional density propagation for visual tracking[J]. International Journal on Computer Vision, 1998, 29 (1) : 5-28.
  • 5KATJA N, ESTER K M , LUC V G. An adaptive color-based particle filter[J]. Image and Vision Com- puting, 2003, 21(1): 99-110.
  • 6COMANICIU D, MEER P. Mean shift., a robust ap- proach toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Inteligence, 2002, 24(5) :603-619.
  • 7COMANICIU D, RAMESH V, MEER P. Kernel- based object tracking[J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2003, 25 (5) : 564-577.
  • 8COMANICIU D. An algorithm for data-driven band- width selection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (2) : 281-288.
  • 9LIN J. Divergence measures based on the Shannon entropy [J]. IEEE Transaction on Information Theo- ry,1991, 37(1): 145-151.
  • 10AHERNE F, THACKER N, ROCKETT P. The Bhattacharyya metric as an absolute similarity measure for frequency coded data[J]. Kybernetika,1998, 34(4):363-368.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部