期刊文献+

基于改进核典型相关分析的人脸识别方法 被引量:1

Face recognition based on improved kernel CCA
下载PDF
导出
摘要 标准KCCA方法需要存储和计算核矩阵,而核矩阵的大小是训练样本数的平方,随着样本数的增加,计算量逐渐增大、特征提取缓慢。为了提高特征提取的效率,提出了一种基于特征向量集的KCCA特征提取方法。采用特征选择方法,选择一个训练样本子集并将其映射到再生核希尔伯特空间(RKHS)。用KCCA进行特征提取,将计算复杂度由3降到2(<<),并将改进后的KCCA与SVDD的优势相结合应用于人脸识别中。实验结果表明,相对传统的KCCA方法,所提出的方法在不影响识别率的前提下,显著提高了人脸识别速度,减小了系统的存储量。 According to the standard KCCA-based extractor, it requires to store and manipulate the kernel matrix in the training stage, the size of which is square of the number of samples. When the sample numbers become large, the calculation of eigenvalues and eigenvectors will be time-consuming. In order to enhance the extraction efficiency, an improved KCCA approach is proposed which is based eigenvector set. First, the feature selection method is used to select a subset of samples which are mapped to RKHS, and then the KCCA is used for feature extraction. By doing so, the computational complexity of KCCA is greatly reduced from O(n^3) to O(nL^2) (L〈〈n). Finally the framework of KCCA plus SVDD-based classifier is used in face recognition. The experimental results demonstrate the proposed method largely reduces the training time and the system storage without deteriorating the recognition accuracy.
作者 胡仿民
出处 《计算机工程与设计》 CSCD 北大核心 2009年第5期1183-1185,1188,共4页 Computer Engineering and Design
基金 甘肃省自然科学基金项目(2007GS04782)。
关键词 人脸识别 核典型相关分析 特征向量选择 支持向量数据描述 特征提取 face recognition kernel canonical correlation analysis feature vector selection support vectors data description feature extraction
  • 相关文献

参考文献4

二级参考文献76

  • 1陈粟,倪林.一种特征脸分析和小波变换相结合的人脸识别方法[J].计算机应用,2004,24(10):75-77. 被引量:11
  • 2Hotelling H.Relation between two sets of variates[J].Biometrika, 1936,28(3 ) :321-377.
  • 3Joliffe I.Principal component analysis[M].New York :Springer, 1986.
  • 4Zheng W,Zhou X,Zou C,et al.Facial expression recognition using kernel canonical correlation analysis[J].IEEE Transactions on Neural Networks,2006,17(1):233-238.
  • 5Loog M,van Ginneken B,Duin R P W.Dimensionality reduction by canonical contextual correlation projections[C]//European Conferenee on Computer Vision,2004,3021:562-573.
  • 6Abraham B,Merola G.Dimensionality reduction approach to multivariate prediction[C]//Computational Statistics & Data Analysis,available online 2 February,2004.
  • 7Li Y,Shawe-Taylor J.Using KCCA for Japanese-English cross-language information retrieval and document classification[J].Jonrnal of Intelligent Information Systems, 2006,27 (2): 117-133.
  • 8Shawe-Taylor J,Cristianini N.Kernel methods for pattern analysis[M]. [S.l.]:Cambridge University Press,2005.
  • 9Hsieh W.Nonlinear canonical correlation analysis by neural Network[J].Neural Networks, 2000,13 ( 10 ) : 1095-1105.
  • 10He X,Yan S,Hu Y,et al.Face recognition using Laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(3): 328-340.

共引文献53

同被引文献17

  • 1耿玉亮,须德.一种鲁棒的摄像机运动分类算法[J].电子学报,2006,34(7):1342-1346. 被引量:3
  • 2Zelniker E E, Gong S, Xiang T. Global abnormal behaviour detection using a networkof CCTV cameras [ A ]. The Eighth International Workshop on Visual Surveillance [ C ]. Marseille: FECCV, 2008.1 - 8.
  • 3Wang X, Tieu K, Grimson E L. Correspondence-free activity analysis and scene modefing in multtple camera views [ J ]. IEEE Transactons on Pattern Analysis and Mchine Intelligence, 2010,32( 1 ) :56 - 71.
  • 4Gray D, Tao H. Vitwpoint invariant pedestrina recognition with Russell D, Gong S, Mary Q. Minimum cuts of a time-varying backgroung [ A]. Proceedings of British Machine Vision Confer- ence[ C ]. Edinburgh: BMVA, 2006. 809 - 818.
  • 5Perona P, Zelnik-Manor L. Self-tuning spectral clustering[A]. Advances in Neural Information Processing Systems 17 [C]. USA:MIT Press,2004. 1601 - 1608.
  • 6Loy C C, Xiang T, Gong S. Incremental activity modeling in multiple disjoint cameras [ J ]. IEEE Transactions on Pattern Anlysis and Machine Intelligence,2012,34(9):1799- 1813.
  • 7Russell D, Gong S, Mary Q. Minimum cuts of a time-varying backgroung[ A]. Proceedings of British Machine Vision Confer- ence[ C]. Edinburgh: BMVA, 2006. 809 - 818.
  • 8Perona P, Zelnik-Manor L. Self-tuning spectral clustering[A]. Advances in Neural Information Processing Systems 17 [ C]. USA:MIT Press,2004. 1601 - 1608.
  • 9Liu Y, Wu F. Video semantic concept detection using multi- modality subspace correlation propagation [ A ]. Advances in Multimedia Modeling [ C ]. Berlin, Heidelberg: Springer-Ver- lag, 2006,4351 : 527 - 534.
  • 10Loy C C, Xiang T, Gong S. Multi-camera activity correlation analysis[A]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[ C ]. Miami, Florida, USA: IEEE,2009. 1988 - 1995.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部