期刊文献+

铁路客运专线车站乘客集散微观仿真模型 被引量:4

Microscopic simulation model of passenger mustering and evacuation in passenger dedicated railway station
原文传递
导出
摘要 为优化铁路客运专线车站的设计,研究了考虑不同发车频率的客流生成机制,应用标准的马尔可夫决策过程描述了乘客在车站内的集散过程,提出了基于逻辑网络和点阵的设备控制表示方法,建立了铁路客运专线车站乘客集散微观仿真模型。仿真发现:当行人移动空间在0.5m2左右时,流量达到峰值,速度分布在20~80m·min-1,并随密度增加呈指数递减趋势;在相同客流输入条件下,不同设施上的客流集散规律不同;通过对行人复杂行为的仿真,成功再现了客流集散中的自组织现象,有效避免了交通流基本图模拟现实交通中的不适应取值范围。结果表明模型具有较高的可靠性和实用性。 In order to optimize the design of passenger dedicated railway station, the mechanism of passenger flow generation was studied, passenger mustering and evacuation process was described by using a standard Markov decision process, a method of facility control based on logical network and point matrix was presented, and a microscopic simulation model of passenger mustering and evacuation was proposed for passenger dedicated railway station. Simulation result shows that the maximum flow appears when passenger space is about 0. 5 m^2, the speed distributes between 20 m · min^-1 and 80 m · min^-1 and increases exponentially with density. Passenger patterns are different according to facility types despite of the same passenger flow input. The simulation of passenger behavior reproduces the self-organization phenomenon successfully, and avoids the inapplicable data sample range of traffic flow fundamental diagram. So the model is reliable and practical. 7 figs, 12 refs.
出处 《交通运输工程学报》 EI CSCD 北大核心 2009年第1期83-86,共4页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(60674012) 国家863计划项目(2007AA11Z136) 北京交通大学校基金项目(2007RC039)
关键词 交通运输 铁路客运专线车站 乘客集散 微观仿真 马尔科夫决策过程 traffic transportation passenger dedicated railway station passenger mustering and evacuation microscopic simulation Markov decision process
  • 相关文献

参考文献11

  • 1DAANEB W. Modeling passenger flows in public transport facilities[D]. Delft: Delft University, 2004.
  • 2何宇强,毛保华,丁勇,张好智,杨静.铁路客运站最高聚集人数模拟计算研究[J].系统仿真学报,2006,18(1):213-216. 被引量:22
  • 3TEKNOMO K. Microscopic pedestrian flow characteristics: development of an image processing data collection and simulation model[D]. Tohoku.. Tohoku University, 2002.
  • 4DAAMEN W S P H. Controlled experiments to derive walking behavior[J]. European Journal of Transport Infrastrueture Research, 2003, 3(1):39-59.
  • 5HELBING D, BUZNA L, JOHANSSON A, et al. Selforganized pedestrian crowd dynamies: experiments, simulations, and design solutions[J].Transportation Science, 2005, 39(1): 1-24.
  • 6李得伟,韩宝明,张琦.基于动态博弈的行人交通微观仿真模型[J].系统仿真学报,2007,19(11):2590-2593. 被引量:14
  • 7李得伟,韩宝明,韩宇.一种逆向改进型A*路径搜索算法[J].系统仿真学报,2007,19(22):5175-5177. 被引量:21
  • 8LI De wei, HAN Bao-ming. Modeling and simulation pedestrian evacuation process in mass transit railway stations[C] ff Huang Ping. Progress in Safety Science and Technology. Beijing: Science Press, 2006: 365-370.
  • 9李得伟,韩宝明,鲁放.基于多智能体的交通枢纽微观仿真研究[J].都市快轨交通,2006,19(5):48-51. 被引量:12
  • 10BLUE V J. Cellular automata microsimulation of bi directional pedestrian flows[R]. Washiugton DC: TRB, 2000.

二级参考文献34

共引文献63

同被引文献24

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部