期刊文献+

解非线性方程组的一类离散的Newton算法 被引量:5

A CLASS OF DISCRETIZED NEWTON METHODS FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS
原文传递
导出
摘要 This paper discusses a class of discretized Newton methods for solving systems of nonlinear equations. The number of function evaluations requred by the new discretized algorithm is about half of the classical discretized Newton method as Brown and Brent methods. The approximation given by the algorithms to F’(x) is strongly consistent. The algorithms can reduce to the Newton method when the difference stepsize h approaches to zeros but Brown and Brent methods can’t do it. Numerical results show the algorithms are efficient. This paper discusses a class of discretized Newton methods for solving systems of nonlinear equations. The number of function evaluations requred by the new discretized algorithm is about half of the classical discretized Newton method as Brown and Brent methods. The approximation given by the algorithms to F'(x) is strongly consistent. The algorithms can reduce to the Newton method when the difference stepsize h approaches to zeros but Brown and Brent methods can't do it. Numerical results show the algorithms are efficient.
出处 《计算数学》 CSCD 北大核心 1998年第1期57-68,共12页 Mathematica Numerica Sinica
基金 国家自然科学基金 北京市自然科学基金
关键词 Brown方法 零空间 非线性代数方程 牛顿法 Brown method, Discrete Newton method, Null space
  • 相关文献

参考文献2

二级参考文献1

  • 1李庆扬,非线性方程组的数值解法,1987年

同被引文献27

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部