期刊文献+

I-Miner环境下聚类分析算法研究与实现

Research and Implementation of Clustering Analysis Algorithms Based on I-Miner
下载PDF
导出
摘要 聚类分析是一种非监督型知识发现的方法,能有效地处理大量的、繁杂的、属性众多的且没有类标志的数据。DBSCAN算法能实现任意形状的数据集的聚类,模糊C均值适合于那些在簇中心周围呈均匀分布的数据集,CABOSFV算法对于高维稀疏数据集(例如Web数据)能很好地聚类。在I-Miner中嵌入DBSCAN、CABOSFV和模糊C均值三种聚类分析算法,能够较好地满足用户的需要,建立数据挖掘模型,支持生产决策。 The clustering analysis is a unsupervised knowledge discovery method, which can effectively process massive, numerous and diverse, the attribute numerous, and unlabeled data. DBSCAN algorithm can achieve clustering of any shape of dataset, Fuzzy c-means is suitable for dataset which is uniform distribution around the cluster centres, CABoSFV algorithm can be a good clustering for high-dimensional dataset(such as Web data). Embedding DBSCAN FCM and CABoSFV clustering analysis algorithm into I-Miner, can be better to enormously satisfy the user's need, establish the data mining model, and support the production decision-making.
出处 《现代计算机》 2009年第2期30-34,共5页 Modern Computer
关键词 聚类分析 DBSCAN算法 模糊C均值 CABOSFV算法 Clustering Analysis Dbscan (Density-Based Spatial Clustering of Applications with Noise) FCM (Fuzzy C-Means ) Cabosfv (Clustering Algorithm Based On Sparse Feature Vector)
  • 相关文献

参考文献5

  • 1Jiawei Han,Micheline Kamber.数据挖掘概念与技术(第2版).机械工业出版社,2007-3..
  • 2北京宏能畅然数据应用有限公司编译.S+Miner入门手册.,2007-4..
  • 3冯少荣,肖文俊.DBSCAN聚类算法的研究与改进[J].中国矿业大学学报,2008,37(1):105-111. 被引量:89
  • 4刘蕊洁,张金波,刘锐.模糊c均值聚类算法[J].重庆工学院学报(自然科学版),2008,22(2):139-141. 被引量:36
  • 5Murpy P.M. Aha D.W. UCI Repository of Machine Learning Databases. Irvine, CA: University of California. 1994. [Online], http://www.ics.uci.edu/mlearn/MLRepository.html

二级参考文献19

  • 1宫改云,高新波,伍忠东.FCM聚类算法中模糊加权指数m的优选方法[J].模糊系统与数学,2005,19(1):143-148. 被引量:81
  • 2刘高军,朱嬿.基于数据挖掘技术的建筑企业信用评价[J].中国矿业大学学报,2005,34(4):494-499. 被引量:21
  • 3ESTER M,KRIEGEL H,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proc of the 1996 2nd Int'l Conf on Knowledge Discovery and Data Mining.Portland:AAAI Press,1996:226-231.
  • 4ESTER M,KRIEGEL H P,SANDER J,et al.Incremental clustering for mining in a data warehousing environment[C]// Proceedings of the Twenty-Fourth Very Large Data Bases(VLDB) Conference.New York:[s.n.],1998:323-333.
  • 5JIN R,YANG G,AGRAWAL G,et al.Shared memory parallelization of data mining algorithms:Techniques,programming interface,and performance[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(1):71-89.
  • 6SHI Yong,SONG Yu-qing,ZHANG Ai-dong.A shrinking-based clustering approach for multidimensional data[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(10):1389-1403.
  • 7Spragins J. Learning without a teacher[ J]. IEEE Transactions of Information Theory, 2005,23 (6) :223 - 230.
  • 8Babusk R. FUZZY AND NEURAL CONTROL[M]. Netherlands: Delft University of Technology, 2001.
  • 9Theodolidis S. Pattern Recongnition [ M ]. Second Edition. USA: Elsevier Scinece, 2003.
  • 10Bezdek J C. Recent convergence results for the fuzzy cmeans clustering algorithm[J]. Classification, 1998,5(2): 237 - 247.

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部