期刊文献+

听觉模型输出谱特征在声目标识别中的应用 被引量:20

Application of auditory spectrum-based features into acoustic target recognition
原文传递
导出
摘要 利用模拟人耳声信号处理过程的CcGC滤波器组模型,研究了听觉特征应用于声目标识别相比传统特征的优势。结果表明:当信号的信噪比下降时,听觉特征逐渐表现出更好的性能,体现了听觉系统优异的抗噪声能力。随后,本文从CcGC滤波器组模型所反映的听觉系统四个主要特性入手,通过仿真实验研究了耳蜗抑制噪声的机理,结果表明听觉系统的临界带划分和非线性压缩在耳蜗抑制噪声中起着关键的作用。 In the acoustic target recognition, the auditory feature's advantages compared with the traditional feature are studied by using the cascade compressive gammachrip (CcGC) filter model, which has been used to describe auditory system function. It is concluded from theoretical analysis and simulations that the auditory feature has better effects as the Signal-to-Noise Ratio (SNR) is reduced. At last, the mechanism of noise suppression in cochlea is analyzed by simulations, and it is shown that Equivalent Rectangular Bandwidth (ERB) expression in frequency domain and the compression of cochlea are essential for cochlea noise suppression.
出处 《声学学报》 EI CSCD 北大核心 2009年第2期142-150,共9页 Acta Acustica
基金 国家自然科学基金(10574104) 西北工业大学基础研究基金(W018104)资助项目。
关键词 听觉模型 声目标识别 谱特征 应用 声信号处理 输出 听觉系统 滤波器组 Acoustic intensity Acoustics Bandwidth compression Electric network analysis Polarization Signal to noise ratio
  • 相关文献

参考文献17

  • 1李朝晖,迟惠生.听觉外周计算模型研究进展[J].声学学报,2006,31(5):449-465. 被引量:22
  • 2Collier G L. A comparison of novices and experts in the identification of sonar. Speech Communicaiton, 2004; 43: 297--310.
  • 3Yao J, Zhang Y T. The application of bionic wavelet trans- form to speech signal processing in cochlear implants using neural network simulations. IEEE Trans. On Biomedical Engineering, 2002; 49(11): 1299--1309.
  • 4Kaibao Nie et al. Encoding frequency modulation to improve cochlear implant performance in noise. IEEE Trans. On Biomedical Engineering, 2005; 52(1): 64--73.
  • 5Remus J J, Collins L M. Vowel and consonant confusion in noise by cochlear implant subjects: Predicting performance using signal processing techniques. ICASSP'04, 2004; 5: 13--16.
  • 6Ekimov A, Sabatier J M. Vibration and sound signatures of human footsteps in buildings. J. Acoust. Soc. Am., 2006; 120(2): 762--768.
  • 7Tucker S, Brown G J. Classification of transient sonar sounds using perceptually motivated features. IEEE Journal of Oceanic Engineering, 2005; 30(3): 588-600.
  • 8Parks T W, Weisburn B A. Classification of whale and ice sounds with a cochlear model. ICASSP-92, 1992; 2: 481-- 484.
  • 9Hynek H. Perecptual linear predictive(PLP) analysis of speech. J. Acoust. Soc. Am., 1990; 87(4): 1738--1752.
  • 10陆振波,章新华,胡洪波.水中目标辐射噪声的听觉特征提取[J].系统工程与电子技术,2004,26(12):1801-1803. 被引量:19

二级参考文献158

  • 1Glasberg B R, Moore B C J. Derivation of auditory filter shapes from notched-noise data, Hearing Research, 1990;47(1-2): 103-108.
  • 2Baumgarte F. A physiological ear model for auditory masking applicable to perceptual coding. Presented at the 103rd AES Convention, Preprint. New York, 1997.
  • 3Tsuyoshi Usagawa, Makoto Lwata, Masanao Ebata.Speech parameter extraction in noisy environment using a masking model. IEEE ICASSP, 1994:II-81-II-84.
  • 4Kuansan Wang, Shamma S A, Byrne W J. Noise robustness in the auditory representation of speech signals, IEEE ICASSP, 1993- II-335-II-338.
  • 5Ghitza O, Auditory models and human performance in tasks related to speech coding and speech recognition.IEEE Trans. on SAP, 1994; 2(1): 115 -132.
  • 6Hynek Hermansky. Perceptual linear predictive (PLP)analysis of speech, J. Acoust, Soc. Am. 1990; 87(4):1738-1751.
  • 7Filip Mulier. Vapnik-Chervonenkis(VC) Learning Theory and Its Applications. 1EEE Trans. on Neural Networks,1999; 10(5): 340 -356.
  • 8Vapnik V. Nature of Statistical Learning Theory. John Wiley and Sons, Inc,, New York, in preparation. IEEE Trans.on Neural Networks, 2001; 12(8): 210-258.
  • 9边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 10黄建国 赵建平.用低阶AR模型极点法进行舰船目标分类[J].水中兵器,1996,(2):26-32.

共引文献42

同被引文献266

引证文献20

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部