期刊文献+

采用连续/不连续单元边界元法的声学灵敏度分析 被引量:1

Boundary element formulations for acoustic sensitivity analysis
原文传递
导出
摘要 采用连续单元与不连续单元混合离散建模的方法,将源点与场点分别划分为连续单元与不连续单元,由于两种网格节点互不重合,从而可以有效避免边界元法中奇异积分的问题。该方法简单易执行,利于工程应用。将该边界元公式应用于声学灵敏度分析中,所得的公式可以用来计算设计参数的改变而导致的场点声压改变量,为验证这一方法的正确性,以脉动球为例进行声灵敏度计算,并与常单元方法比较,证实了该方法的准确性。 The discrete field points and source points are represented by using the continuous and discontinuous boundary elements respectively such that the place of these two kinds of points will not be coincident. Thereby singular integrals are avoided. This method is easy to be implemented. Based on these methods, the expressions of acoustic sensitivities are presented. Numerical results of acoustic sensitivity of pulsating sphere are compared with analytical solutions and constant boundary element method solutions respectively to demonstrate the availability of the method.
出处 《声学学报》 EI CSCD 北大核心 2009年第2期175-179,共5页 Acta Acustica
基金 国家自然科学基金(50575063) 国家863计划重大专项((2006AA110101)资助项目。
关键词 灵敏度分析 边界元法 不连续 单元 声学 公式应用 混合离散 网格节点 Acoustics Inverse problems Sensitivity analysis
  • 相关文献

参考文献13

  • 1Bernhard R J, Smith D C. Acoustic design sensitivity analysis. In: Ciskowski R D, Brebbia C A, editors. Boundary element methods in acoustics, Amsterdam: Computational Mechanics Publications-Elsevier Applied Science, 1991.
  • 2KANE J H, MAO S, EVERSTINE G C. A boundary element formulation for acoustic shape sensitivity analysis. J. Acoust. Soc. Am., 1991; 90(1): 561--573.
  • 3KOO B U, IH J G, LEE B C. Acoustic shape sensitivity analysis using the boundary integral equation. J. Aconst. Soc. Am., 1998; 104(5): 2851--2860.
  • 4KO0 B U. Shape design sensitivity analysis of acoustic problems using a boundary element method. Computers and Structures, 1997; 65(5): 713--719.
  • 5Nam H. Kim, Jun Dong. Shape sensitivity analysis of sequential structural-acoustic problems using FEM and BEM. Journal of Sound and Vibration, 2006; 290: 192-- 208.
  • 6Jun Dong, Kyung K. Choi, Nickolas Vlahopoulos, Aimin Wang, Weiguo Zhang. Sensitivity analysis and optimiza- tion using energy finite element and boundary element methods. AIAA Journal, 2007; 45:1187--1198.
  • 7张军,兆文忠,张维英.结构声辐射有限元/边界元法声学-结构灵敏度研究[J].振动工程学报,2005,18(3):366-370. 被引量:24
  • 8Marburg S. Six elements per wavelength. Is that enough? Journal of Computational Acoustics, 2002; 10:25--51.
  • 9l~edrik HolmstrSm. Structure-acoustic analysis using BEM/FEM. Master dissertation, Lund University, 2001.
  • 10Marburg S, Nolte B. Computational acoustics of noise propagation in fluids - finite and boundary element methods. Springer Berlin Heidelberg, 2008.

二级参考文献20

  • 1Wang Weiping,J Acoust Soc Am,1997年,101卷,3期,1468页
  • 2Chien C C,J Acoust Soc Am,1990年,88卷,2期,918页
  • 3Lamancusa J S. Numerical optimization techniques for structural-acoustic design of rectangular panels [J].Comput. Struc, 1993,48 (4):661-675.
  • 4Lamancusa J S, Eschenauer H A. Design optimization methods for rectangular panels with minimal sound radiation[J]. AIAA J, 1994,32 (3) :472-479.
  • 5Hambric S A. Sensitivity calculation for broadband acoustic radiated noise design optimization problems[J]. J. Vib. Acoust, 1995,117(1):136-144.
  • 6Cunefare K A, Koopmann G H. Acoustic design sensitivity for structural radiators[J]. Journal of Vibration and Acoustics, 1992,114: 204-215.
  • 7Scarpa F. Parametric sensitivity analysis of coupled acoustic-structural systems [J]. Journal of Vibration and Acoustics, 2000,122:109-115.
  • 8Kim N H, Dong J, Choi K K, et al. Design sensitivity analysis for sequential structural-acoustic problems[J]. Journal of Sound and Vibration, 2003,263 (3):569-591.
  • 9Dong J, Choi K K, Kim N H. Design optimization for structural-acoustic problem using FEA-BEA with adjoint variable method[J]. ASME Journal of Mechanical Design, 2004,126 (3): 527-533.
  • 10Dong Jun, Choi Kyung K, Wang Aimin, et al. Parametric design sensitivity analysis of high-frequency structural-acoustic problems using energy finite element method[J]. International Journal for Numerical Methods in Engineering, 2005,62: 83-121.

共引文献38

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部