摘要
采用连续单元与不连续单元混合离散建模的方法,将源点与场点分别划分为连续单元与不连续单元,由于两种网格节点互不重合,从而可以有效避免边界元法中奇异积分的问题。该方法简单易执行,利于工程应用。将该边界元公式应用于声学灵敏度分析中,所得的公式可以用来计算设计参数的改变而导致的场点声压改变量,为验证这一方法的正确性,以脉动球为例进行声灵敏度计算,并与常单元方法比较,证实了该方法的准确性。
The discrete field points and source points are represented by using the continuous and discontinuous boundary elements respectively such that the place of these two kinds of points will not be coincident. Thereby singular integrals are avoided. This method is easy to be implemented. Based on these methods, the expressions of acoustic sensitivities are presented. Numerical results of acoustic sensitivity of pulsating sphere are compared with analytical solutions and constant boundary element method solutions respectively to demonstrate the availability of the method.
出处
《声学学报》
EI
CSCD
北大核心
2009年第2期175-179,共5页
Acta Acustica
基金
国家自然科学基金(50575063)
国家863计划重大专项((2006AA110101)资助项目。