期刊文献+

扩展有限元中非连续区域的一种积分方案 被引量:11

An integration scheme for discontinuities in the extended finite element method
原文传递
导出
摘要 为促进和推广扩展有限元在实际复杂问题中的应用,提出一种适用于扩展有限元非连续区域积分的简易积分方案。利用基于该积分方案的扩展有限元程序,结合粘聚裂纹模型实现了对三点弯梁开裂过程的模拟。结果表明,由此积分方案得出的结果与常规分片积分法方案得到的结果以及已有研究结果十分吻合。与已有积分方案相比,此简易积分方案既能保证精度和收敛性,同时无需复杂的分片积分过程,也无需考虑零能模式的控制措施,大大地降低了建模的复杂性和成本。 A simple integration scheme is presented for numerical quadrature of discontinuous zones in the extended finite element method (XFEM). This integration scheme is used in an XFEM analysis to model the fracture of a three-point bending beam using the cohesive crack model. The results agree well with those obtained from two other conventional subdomain integration schemes. In contrast to previous integration schemes, this scheme guarantees accuracy and convergence, simplifies the integration procedure, and needs no hour-glass control, so the modeling complexity and cost are sharply reduced.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第3期351-354,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(50779024,50639060)
关键词 扩展有限元 虚结点 积分方案 三点弯梁 extended finite element phantom nodes integration scheme three-point bending beam
  • 相关文献

参考文献9

  • 1李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:132
  • 2Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. Int J Numer Meth Engng, 1999, 45:601 - 620.
  • 3Moes N, Dolbow J, Belytsehko T. A finite element method for crack growth without remeshing[J]. Int J Numer Meth Engng, 1999, 46: 131- 150.
  • 4Daux C, Moes N, Sukumar N, et al. Arbitrary branched and intersecting cracks with the extend finite element method [J]. Int J Numer Meth Engng, 2000, 48:1741 - 1760.
  • 5Melenk J M, Babuska I. The partition of unity finite element method: Basic theory and applications[J]. Comput Methods Appl Meth Engng, 1996, 139: 289-314.
  • 6Song J-H, Areias P M A, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes [J]. Int J Numer Meth Engng, 2006, 67:868 - 893.
  • 7Areias P M A, Belytsehko T. Analysis of three-dimensional crack initiation and propagation using the extended finite element method [J]. Int J Numer Meth Engng, 2005, 43: 760 - 788.
  • 8Wells G N, Sluys L J. A new method for modeling cohesive eracks using finite elements [J]. Int J Numer Meth Engng, 2001, 50: 2667-2682.
  • 9方修君,金峰,王进廷.基于扩展有限元法的粘聚裂纹模型[J].清华大学学报(自然科学版),2007,47(3):344-347. 被引量:43

二级参考文献115

  • 1方修君,金峰.基于ABAQUS平台的扩展有限元法[J].工程力学,2007,24(7):6-10. 被引量:64
  • 2Ortiz M, Leroy Y, Needleman A. A finite element method for localized failure analysis. Computer Methods in Applied Mechanics and Engineering, 1987, 190:3647~3672
  • 3Belvtschko T, Fish J, Engelmann B E. A finite element withembedded localization zones. Computer methods in Applied Mechanics and Engineering, 1988, 70:59~89
  • 4Dvorkin E N, Cuitino A M, Gioia G. Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions. International Journal for Numerical Methods in Engineering, 1990, 30:541~564
  • 5Lotfi H R, Sheng P B. Embedded representations of fracture in concrete with mixed finite elements. International Journal for Numerical Methods in Engineering, 1995, 38:1307~1325
  • 6Simo J C, Oliver J, Armero F. An analysis of strong discontinuities induced by strain softening in rate-independent in elastic solids. Computational Mechanics, 1993, 12:277~296
  • 7Simo J C, Oliver J. Modeling strong discontinuities in solid mechanics by means of strain softening constitutive equations. In: Mang H, Bicanic N, de Borst R, eds. Computational Modeling of Concrete Structures. Pineridge:Swansea, 1994. 363~372
  • 8Armero F, Garikipati K. An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. International Journal of Solids and Structures, 1996,33:2863~2885
  • 9Sluys L J, Berabds A H. Discontinuous failure analysis for model-Ⅰ and model-Ⅱ localization problems. International Journal of Solids and Structures, 1998, 35:4257~4274
  • 10Larsson R, Runesson K. Element-embedded localization band based on regularized displacement discontinuity. ASCEJournal of Engineering Mechanics, 1996, 12:402~411

共引文献166

同被引文献141

引证文献11

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部