期刊文献+

基于贝叶斯网络的车身制造偏差诊断 被引量:2

Fault diagnosis of body deviation based on Bayesian network
下载PDF
导出
摘要 车身结构的复杂性及知识表达的不精确性,使得车身故障症状与故障原因之间的映射表现为随机和不确定。针对这些特点,在大量车身测量数据和历史诊断案例的基础上,将贝叶斯网络引入到车身偏差故障诊断中去。对贝叶斯网络的参数学习进行了探讨,结合实例统计和相关性分析建立了车身偏差诊断的贝叶斯网络模型。最后用以某车型的偏差诊断案例对该方法进行了验证,结果表明该方法在工程实际中有一定的指导性。 The mapping of body's fault symptom and source register as randomization and uncertainty because of the complexity and uncertainty of body deviation. Based on massive measurement data of body and historical cases, Bayesian network is combined with deviation diagnosis of body. Parameter study of Bayesian network is investigated. According to the methods of example statistics and correlation analysis, Bayesian diagnosis model of body deviation is established. The fault diagnosis case of one model has proved the feasibility of this method finally and it can guide our diagnosis in practice.
出处 《机械》 2009年第3期67-70,共4页 Machinery
关键词 车身偏差 贝叶斯网络 故障诊断 body deviation Bayesian network fault diagnosis
  • 相关文献

参考文献3

二级参考文献28

  • 1Hu S J. Stream of Variation Theory for Automotive Body Assembly[ J ]. Annals of the CIRP, 1997,46 ( 1 ) : 1 -- 6.
  • 2王静龙 濮晓龙 等.高等数理统计[M].北京:高等教育出版社,1998.143-154.
  • 3Young Moon Park,Gwang-Won Kim,Jin-Man sohn.A Logic Based Expert System (LBES) for Fault Diagnosis of Power System [J].IEEE Transaction on power system,1997,12 (1):363-369.
  • 4Zhu Y L,Yang Y H,Hogg B W.An Expert System for Power Systems Fault Analysis [J].IEEE Transaction on power system,1994,9 (1):503-509.
  • 5Hyun-Joon Cho,Jong-Keun Park.An Expert System for Fault Section Diagnosis of Power Systems using Fuzzy Relations [J].IEEE Transaction on power system,1997,12(1):342-347.
  • 6Wen F S,Chang C S.Robabilistic Approach for Fault-section Estimation in Power Systems Based on a Refined Genetic Algorithm [J].IEE Proceeding Generation Transmition and Distribution,1997,144 (2):160-168.
  • 7David Heckerman,Abe Mamdani,Michael P Wellman.Real-world applications of Bayesian networks [J].Communications of the ACM,1995,38 (3):24-26.
  • 8Judea Pearl.Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference[M].San Francisco:Morgan Kaufmann,1988.
  • 9Sowmya Ramachandran.Theory Refinement of Bayesian Networks with Hidden Variables [D].Austin:The University of Texas at Austin,1998.
  • 10SCHANK R C. Dynamic memory: a theory of reminding and learning in computers and people[M]. Cambridge, UK: Cambridge University Press, 1982.

共引文献46

同被引文献14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部