期刊文献+

一种共调控基因聚类的新方法 被引量:2

A Novel Approach to Clustering Co-regulated Gene
下载PDF
导出
摘要 定义了一种基于滑动匹配的相似度,并在此基础上提出一种能够自适应确定聚类数目的全局K-均值算法,解决了现有共调控基因聚类方法无法考虑到基因的正反、延时、部分时间和差异表达全部4种共调控关系的问题.将提出的算法应用于微阵列数据中,并将实验结果与CLUSTER 3.0算法进行了比较,验证了算法的可行性和有效性. This paper presents a new method of similarity measurement, on the basis of which an global K-means algorithm is presented that is self-adaptive to the determination of the number of cluster, so as to solve the problem that the existing methods of co-regulated gene clustering can take into account all the four co-regulating relationships, that is, reverse, asynchronous, part-time, and differences in the expression. The present algorithm has been applied to the microarray data, and the compare experimental results with CLUSTER 3.0 prove that the algorithm is efficient.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第2期292-298,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:604330206067309960773095) 国家高技术研究发展计划863项目基金(批准号:2007AA04Z114) 吉林大学"985工程"项目基金 欧盟项目TH/AsiaLink/010(批准号:111084) 教育部"符号计算与知识工程"重点实验室项目基金(批准号:93K-17)
关键词 共调控基因 聚类 全局K-均值 相似度度量 co-regulating gene clustering global K-means similarity measurement
  • 相关文献

参考文献12

  • 1Yeung K Y, Medvedovic M, Bumgarner R E. From Co-expression to Co-regulation: How Many Microarray Experiments Do We Need [ J ]. Genome Biology, 2004, 5 (7) : R48.
  • 2Allocco D J, Kohane I S, Butte A J. Quantifying the Relationship between Co-expression, Co-regulation and Gene Function [J]. BMC Bioinformatics, 2004, 5: 18.
  • 3YU Hai-yuan, Luscombe N M, QIAN Jiang, et al. Genomic Analysis of Gene Expression Relationships in Transcriptional Regulatory Networks [J]. Trends Genet, 2003, 19(8) : 422-427.
  • 4ZHANG Ya, ZHA Hong-yuan, Wang J Z, et al. Gene Co-regulation vs Co-expression [ EB/OL]. 2004-02. http:// infolab, stanford, edu/- wangz/project/genome/G2004.2/zhang, pdf.
  • 5JI Li-ping, Tan K L. Mining Gene Expression Data for Positive and Negative Co-regulated Gene Clusters [ J]. Bioinformatics, 2004, 20(6) : 2711-2718.
  • 6王喆,陆楠,周春光.基于决策树归纳的聚类方法与实现[J].吉林大学学报(信息科学版),2003,21(2):132-137. 被引量:11
  • 7MacQueen J B. Some Methods for Classification and Analysis of Multivariate Observations [ C]//Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: Univresity of California Press, 1967, 1: 281-297.
  • 8Pena J M, Lozano J A, Larranaga P. An Empirical Comparison of Four Initialization Methods for the K-Means Algorithm [J]. Pattern Recognition Letters, 1999, 20(10) : 1027-1040.
  • 9Maulik U, Bandyopadhyay S. Genetic Algorithm-based Clustering Technique [J]. Pattern Recognition, 2000, 33 (9) : 1455-1465.
  • 10Spellman P T, Sherlock G, Zhang M Q, et al. Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization [ J ]. Molecular Biology of the Cell, 1998, 9(12) : 3273-3297.

二级参考文献6

  • 1韩家炜.数据挖掘概念与技术(Data Mining:Concepts and Techniques)[M].北京:机械工业出版社(Beijing:MechanieA Technology P,2000..
  • 2韩家炜(HAN Jia-wei).数据挖掘概念与技术 (Data Mining : Concepts and Techniques)[M].北京:机械工业出版社(Beijing: Mechanical Technology Press),2000..
  • 3Gehrke J, Ramarrishman R, Ganti V. Rainforest. A frame work for fast decision tree construction of large damsets[A]. In Proc 1998 Int Conf Very Large Data Bases (VLDB'98) l-C], New York: [s. n] 1998. 416--427.
  • 4Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large databases [A]. SIOMOD-98 [C].Washington: ACM Press, 1998, ISBN 0-89791-995-5.
  • 5Agrawal A, Grhrke J, Gunopulos D,Raghavan P. Automatic subspace clustering for high dimensional data for datamining applications [A]. SIGMOD-98 [C], Washington: ACM Press, 1998, ISBN 0-89791-995-5.
  • 6Sudipto Guha, Rajeev Rastogl, Kyuseok Shim. Rock: a robust clustering algorithm for categorical attributes [A]. In Proeeedkngs of the 15th International Conference on Data Engineering 1999 [C]. Sydney: IEEE Computer SocietyPress, 1999.

共引文献10

同被引文献18

  • 1王利民,李雄飞,张海龙.基于广义信息论的贝叶斯分类器动态建模[J].吉林大学学报(工学版),2009,39(3):776-780. 被引量:5
  • 2董立岩,刘光远,苑森淼,李永丽,孙铭会.混合式朴素贝叶斯分类模型[J].吉林大学学报(信息科学版),2007,25(1):57-61. 被引量:8
  • 3Liu Cheng-jun. Gabor-based kernel PCA with fractional power polynominal models for face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004, 26(5) : 572-581.
  • 4Xin Zheng. Locality preserving clustering for image database[C]//ACM Conference on Multimedia, 2004 : 10-16.
  • 5Aggarwal C C,Hinneburg A, Keim D A. On the surprising behavior of distance metrics in high dimensional space[J]. Lecture Notes in Computer Science, 2001: 420 -434.
  • 6Wojna A. Center-based indexing in vector and metric spaces[J]. Fundamenta Informaticae, 2003, 56 (3): 285-310.
  • 7Xu Rui. Survey of clustering algorithms [J]. IEEE Transactions on Neural Networks, 2005, 16 (3) : 645- 678.
  • 8Heisele B, Serre T, Prentice S, et al. Hierarchical classification and feature reduction for fast face detection with support vector machines[J]. Pattern Recognition, 2003,36(9):2007-2017.
  • 9Hartemink A J,Gifford D K,Jaakkola T S,et al.Combing Location and Expression Data for Principled Discovery of Genetic Regulatory Network Models[C] //Proc Pacific Symposium on Biocomputing.Kauai:World Scientific Press,2002:437-449.
  • 10WANG Yong,Joshi T,ZHANG Xiang-sun,et al.Inferring Gene Regulatory Networks from Multiple Microarray Datasets[J].Bioinformatics,2006,22(19):2413-2420.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部