摘要
楔形体稳定分析一般采用刚体极限平衡法,然而该方法仅使楔形体的部分平衡条件得到满足,而且还对滑动面反力做了一些假定,由此导致了计算结果不一定是真实的。结合极限分析与块体元法,提出了楔形体稳定分析的下限解法,没有对楔形体的破坏模式、滑动面反力及滑动面数量做任何的假定。采用块体元法的离散思想,将楔形体离散为块体-结构面组成的系统;根据下限定理,构造了满足完全平衡条件、边界条件和屈服条件的静力许可场;建立了下限法数学规划模型,并通过非线性规划获得楔体稳定严格的下限解。3个典型算例验证了本文方法的正确性及可行性。
The rigid limit equilibrium method has been widely used to analyze the wedge stability. However, it does not satisfy equilibrium equations, and it still requires assumptions regarding the force reactions, which may result in false results. A new method based on the lower bound method to analyze the stability of wedge slopes is proposed. It does not require assumptions regarding the wedge failure mode, the force reactions or the number of slide planes. The block-structural plane model is used for constructing the statically admissible stress fields which satisfy the equilibrium conditions, boundary conditions and yield criteria. By using the idea of nonlinear programming, the lower bound limit analysis model of mathematical programming for wedge stability is established. Finally, three examples are used, and the results agree well with those from the finite element and the upper bound methods.
出处
《岩土工程学报》
EI
CAS
CSCD
北大核心
2009年第3期431-436,共6页
Chinese Journal of Geotechnical Engineering
基金
教育部科学技术研究重点项目(106107)
关键词
楔形体稳定
下限法
块体元法
刚体极限平衡法
安全系数
wedge stability
lower bound method
block element method
rigid limit equilibrium method
factor of safety