期刊文献+

定量近红外光谱分析中应用自适应神经网络法建立校正模型 被引量:1

Application of Algorithm of Adaptive Neural Network to Construction of Calibration Model in Quantitative Near IR Spectrometric Analysis
下载PDF
导出
摘要 论述了将自适应神经网络,结合内模控制,建立校正模型,应用于定量近红外光谱法测定石油化工产品中各组分的可行性。试验中,以dSPACE硬件平台为基础,以直馏柴油、加氢精制柴油和催化裂解柴油为校正模型的训练样本,对自适应神经网络校正模型作检验。试验结果表明:该方法响应速度快、误差小、鲁棒性强,在近红外长波区(800-2300nm)内,校正样品和验证样品的均方偏差均小于1×10^-6。 The feasibility of application of the algorithm of adaptive neural network, in combination with the internal model control, to the construction of calibration model in quantitative near IR-spectrometric analysis of petroleum and chemical products for their constituents was approached and discussed. In the testing, the hardware platform of dSPACE was taken as a basis, and samples of direct distilled diesel oil, hydrogenated refining diesel oil and catalytic-cracking diesel oil were taken as training samples, to test the validity of calibration model constructed by adaptive neural network. As shown by experimental results, the proposed method was proved to have quick response, small error and good robustness. In the IR spectral range of 800--2 300 nm, the values of mean square deviation of calibration samples and testing samples were found all less than 1×10^-6.
出处 《理化检验(化学分册)》 CAS CSCD 北大核心 2009年第3期257-260,263,共5页 Physical Testing and Chemical Analysis(Part B:Chemical Analysis)
基金 上海市教委自然科学基金(050Z10)
关键词 近红外光谱 自适应神经网络 内模控制 定量分析 Near IR-spectrometry Adaptive neural network Internal model control Quantitative analysis
  • 相关文献

参考文献11

二级参考文献25

  • 1尹球,疏小舟,徐兆安,匡定波.湖泊水环境指标的超光谱响应特征分析[J].红外与毫米波学报,2004,23(6):427-430. 被引量:32
  • 2郏东耀,丁天怀.利用纤维红外吸收特性的皮棉杂质检测新方法[J].红外与毫米波学报,2005,24(2):147-150. 被引量:24
  • 3何勇,李晓丽.用近红外光谱鉴别杨梅品种的研究[J].红外与毫米波学报,2006,25(3):192-194. 被引量:65
  • 4成耀祖.凝胶渗透色谱法的进展及其应用[M].北京:中国石化出版社,1993..
  • 5HE Yong,LI Xiao-Li,SHAO Yong-Ni.Quantitative analysis of the varieties of apple using near infrared spectroscopy by principal component analysis and BP model[J].Lecture Notes in Artificial Intelligence,2005,3809:1053-1056.
  • 6HE Yong,FENG Shui-Juan,DENG Xun-Fei.et al.Study on lossless discrimination of varieties of yogurt using the Visible/NIR-spectroscopy[J].Food Research International,2006,39(6):645-650.
  • 7HE Yong,LI Xiao-Li,SHAO Yong-Ni.Quantitative analysis of the varieties of apple using near infrared spectroscopy by principal component analysis and BP model[J].Lecture Notes in Artificial Intelligence,2005,3809:1053-1056.
  • 8Bennedsen B S,Peterson D L.Performance of a system for apple surface defect identification in near-infrared images[J].Biosystems Engineering,2005,90(4):419-431.
  • 9HE Yong,SONG Hai-Yan,Pereira A G,et al.A new approach to predict N,P,K and OM content in a loamy mixed soil by using near infrared reflectance spectroscopy[J].Lecture Notes in Computer Science,2005,3644:859-867.
  • 10Geladi P. , Esbensen K. H.. Journal of Chemometrics[J], 1990, 4(5) : 337-354.

共引文献106

同被引文献17

  • 1LIUXue-song QUHai-bin CHENGYi-yu.Determination of Active Components in a Natural Herb with Near Infrared Spectroscopy Based on Artificial Neural Networks[J].Chemical Research in Chinese Universities,2005,21(1):36-43. 被引量:7
  • 2MOK K W D, CHAU Foo-tim. Chemical information of Chinese medicines., a challenge to chemist[J]. Che- mometrics and Intelligent Laboratory Systems, 2006, 82(1/2) ..210-217.
  • 3VAPNIK V. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995.
  • 4GELADI P, KOWALSKI B R. Partial least squares regression: a tutorial[J]. Analytical Chimica Acta, 1986,185:1-17.
  • 5TONG Wei-da, HONG Hui-xiao, FANG Hong, et al. Decision forest: combining the predictions of multi- ple independent decision tree models[J]. Journal of Chemical Information and Computer Sciences, 2003,43 (2) :525-531.
  • 6JAWORSKI A, WIKIEL K, WlKIEL H. Application of multiblock and hierarchical PCA and PLS models for analysis of AC vohammetric data[J]. Electroanalysis, 2005,17(15/16) : 1477-1485.
  • 7OPITZ D W, SHAVLIK J W. Actively searching for an effective neural network ensemble[J]. Connection Science, 1996,8(3/4) : 337 353.
  • 8LI Yan-kun, SHAO Xue-guang, CAI Wen-sheng. A consensus least squares support vector regression (LS- SVR) for analysis of near-infrared spectra of plant samples[J]. Talanta, 2007,72 (1) : 217-222.
  • 9SU Zhen-qiang, TONG Wei-da, SHI Le-ming, et al. A partial least squares-based consensus regression method for the analysis of near-infrared complex spectra data of plant samples[J]. Analytical Letter, 2006,39(9) : 2073-2083.
  • 10GRAMATICA P, PILUTTI P, PAPA E. Validated QSAR prediction of OH tropospheric degradation of VOCs splitting into training-test sets and consensus modeling[J]. Journal of Chemical Information and Computer Sciences, 2003,44 (5) : 1294-1802.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部