摘要
研究一般的(H,G)型变换通过适当合成变换后生成拟正则半群;并建立了G-变换和(H,G)型变换两者之间的拟共形共轭关系.对于给定的一个拟正则半群,构造了一个不变共形结构GΓ,使得该半群中的每个元素在这个不变共形结构下保持G-变换不变.
By researching general (H,G) transformations,it is obtained that a proper composition of (H,G) transformations forms a quasiregular semigroups.Furthermore,the relations of G transfromations and (H,G) transformations are established.Finally,for a given quasiregular semigroup one constructs an invariant confromal structure such that each element in the semigroup keeps G transformation invariant under this structure.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
1998年第3期116-119,共4页
Journal of Shanghai Jiaotong University
关键词
复变函数
G-变换
(H
G)-变换
拟正则半群
complex variable functions
G transformations
(H,G) transfromations
quasiregular semigroups
invariant conformal structure