期刊文献+

基于MAXQ方法的分层强化学习 被引量:1

Hierarchical Reinforcement Learning with MAXQ Method
下载PDF
导出
摘要 强化学习是机器学习领域的一个重要分支,但在强化学习系统中,学习的数量会随着状态变量的个数成指数级增长,从而形成"维数灾"。为此提出了一种基于MAXQ的分层强化学习方法,通过引入抽象机制将强化学习任务分解到不同层次上来分别实现,使得每层上的学习任务仅需在较小的空间中进行,从而大大减少了学习的数量和规模。并给出具体算法——MAXQ-RLA。 Reinforcement learning is an important branch of machine learning. In the system of reinforcement learning,the learning stategies increase exponentially along with the number of state variables, which is called "dimensions disaster". Here a hierarchical reinforcement learning based on the MAXQ is proposed to solve this problem,which is realized by decomposing the task to different level,thus sub - tasks in every level can be solved in relatively smaller scale. This method turns out to be effective to decrease the stategies. Finally,offer the concerned algorithm-MAXQ- RLA.
出处 《计算机技术与发展》 2009年第4期154-156,169,共4页 Computer Technology and Development
基金 安徽省教育重点项目(KJ2008A142C) 安徽省自然科学基金项目(KJ2007B061)
关键词 分层强化学习 MAXQ MDP hierarchical reinforcement learning MAXQ MDP
  • 相关文献

参考文献6

  • 1Iima H, Kuroe Y. Swarm reinforcement learning algorithms - exchange of information among multiple agents [ C ]//SICE, 2007. Annual Conference. JAPAN: SICE, 2007 : 2779 - 2784.
  • 2Erfu Y, Yang E. A Multiagent Fuzzy Policy Reinforcement Learning Algorithm with Application to Leader - Follower Robotic Systems [ C] //Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference. New YorK: IEEE,2006:3197 -3202.
  • 3Handa H. Evolutionary Computation on Multitask Reinforcement Learning Problems[ C]//Networking,Sensing and Control, 2007 IEEE International Conference. New York: IEEE, 2007: 685 - 688.
  • 4Watanabe T, Takahashi Y. Hierarchical reinforcement learning using a modular fuzzy model for multi - agent problem[J ]. Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference. New York: IEEE,2007 : 1681 - 1686.
  • 5Dietterich T G. Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition[ J ]. Journal of Artificial Intelligence Research,2000,13 : 227 - 303.
  • 6Diettefich T G. The MAXQ method for hierarchical reinforcement learning[ C]//Proc of the 15th ICML. San Francisco: Morgan Kaufmann, 1998 : 118 - 126.

同被引文献9

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部