期刊文献+

基于神经网络的轴类损伤检测研究 被引量:3

A experiment of a shaft damage detection based on artif icial network
下载PDF
导出
摘要 理论分析表明,结构损伤前后固有频率的变化包含了结构损伤位置和程度的信息。在此理论基础上,对一个一端固定轴模型进行了损伤数值模拟,提取固有频率的变化信息并采取合适的方法构造改进型BP神经网络来判断结构损伤。检测表明,该方法在结构损伤检测中具有较好的应用前景。 It has been proved that the natural frequency changes of structures contain the information such as location and degree of structural damage. Based on this theory , a experiment to simulate the damage of a shaft with one end fixed is used , extracting the natural frequency changes and forming the input vectors of the BP algorithm network , detecting the structural damage by the t rained networks , the result s show the effectiveness of this method.
作者 蔡佳 佟刚
出处 《沈阳航空工业学院学报》 2009年第1期42-45,30,共5页 Journal of Shenyang Institute of Aeronautical Engineering
关键词 损伤识别 固有频率 改进型BP神经网络 一端固定轴 damage identification natural frequency BP artificial network shaft with one end fixed
  • 相关文献

参考文献6

二级参考文献23

  • 1徐宜桂,史铁林,杨叔子.基于神经网络的结构动力模型修改和破损诊断研究[J].振动工程学报,1997,10(1):8-12. 被引量:44
  • 2钱管良,J Sound Vib,1990年,138卷,2期,233页
  • 3钱管良,固体力学学报,1990年,3期,317页
  • 4Ni Y Q,Smart Structures and Materials 1999:Smart Systems for Bridges, Struc-tures, a,1999年
  • 5Tsou P,AIAJ,1994年,32卷,176页
  • 6Elkordy M F,J Computing Civ Engig ASCE,1993年,7卷,130页
  • 7Wu X,Comput Struct,1992年,42卷,649页
  • 8Zhao J,J Infrastruct Syst ASCE,1998年,4卷,93页
  • 9Alampalli S,J Struct Eng ASCE,1997年,123期,237页
  • 10Luo H,AIAA J,1997年,35卷,1522页

共引文献222

同被引文献21

  • 1张庆新,王凤翔,李文君,赵树国.NiMnGa合金磁控形状记忆效应及外特性[J].稀有金属材料与工程,2005,34(8):1263-1266. 被引量:15
  • 2汪晓东,张长江,张浩然,冯根良,许秀玲.传感器动态建模的最小二乘支持向量机方法[J].仪器仪表学报,2006,27(7):730-733. 被引量:18
  • 3吴德会,杨世元,董华.基于最小二乘支持向量机的传感器动态系统辨识方法[J].电子测量与仪器学报,2006,20(6):36-40. 被引量:6
  • 4B. Kiefer a,, D. C. Lagoudas a, Magnetic Field - induced Martensitic Variant Reorientation in Magnetic Shape Memory Alloys [J]. Philosophical Magazine,2005,89(33 -35) :4289 -4329.
  • 5Vapnik V, Levin E, L eCun Y. Measuring the VC - dimension of a learning machine [ J ]. Neural Computation, 1994 ( 6 ) : 851 - 876.
  • 6J. K. Olesen, G. N. Yannakakis, J. Hallam. Real-time challenge balance in an RTS game using rtNEAT[ A]. In Proceedings of the IEEE. Symposium on Computational Intelligenoe and Games [ C ]. 2008.
  • 7S. Kalyanakrishnan and P. Stone. An empirical analysis of value function - based and policy search reinforcement learning [ A ]. Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS)[ C]. 2009.
  • 8De Jong, Edwin D. , Watson, et al. Reducing Bloat and Promoting Diversity using Multi -Objective Methods[ A]. Proceedings of GECCO 2001 [ C] ,2001.
  • 9Hisashi Tamaki, Hajime Kita, Shigenobu Kobayashi. Multi -objective optimization by genetic algorithms[ A]. A Review. International Conference on Evolutionary Computation [ C]. 1996:517 - 522.
  • 10Yau, Y. J, Teo, J. Anthony, P. Pareto evolution and co - evolution in cognitive game AI synthesis[J].EMO 2007,2007,4403 : 227 - 241.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部