期刊文献+

强变形过程中铁镍合金的微观结构演化机制 被引量:2

Microstructure Evolution Mechanism of Fe-Ni Alloy During Severe Plastic Deformation
原文传递
导出
摘要 采用透射电镜观察了铁镍(Fe-32%Ni)合金在形变温度500℃(<0.5Tm)、形变速率10-2s-1的变形条件下多轴锻造变形过程中的微观结构演变。结果表明,低温多轴锻造强变形可明显细化晶粒,细化过程为:首先,位错墙、位错缠绕等结构通过大量位错滑移运动在原始晶粒内形成;其次,不同方向的变形导致不同方向的滑移系开动,从而致使不同方向的位错墙互相交叉,将原始粗晶粒细分成小尺寸的胞块结构,当变形量达到一定程度时,位错墙和位错缠绕结构内的位错开始重新排列,形成小角度晶界,导致亚晶粒形成;由于变形量不断增加强迫大量的位错在亚晶界处积聚、重排,同时不同方向的变形造成亚晶发生转动,位错重新规则排列及亚晶转动使小角度的亚晶界转变为大角度晶界,从而形成细小的新晶粒。 The microstructure evolution of Fe-32%Ni alloy multi-axially forged at the temperature of 500 ℃ (〈0. 5Tm) and strain rate of 10^-2 s^-1 was investigated by using TEM. The results show that the grains were obviously refined by low temperature multi-axial forging, and the grain refinement mechanism was presented: firstly, the dislocation walls and dislocation tangles were formed in the original grains by large amounts of dislocation glide; then the glide system with different direction were activated by different direction compression, which resulted in the formation of dislocation walls and dislocation tangles in different direction. These dislocation walls and dislocation tangles subdivided the original grains into fine cell structures. The dislocations in the dislocation cell boundaries will be rearranged when the cumulative strain reached some certain amount, then the subgains were formed. The increased strain makes large amounts of dislocations rearrange in the subgain boundaries, and at the same time the rotation of subgrains is caused by the deformation in different direction. The dislocation rearrangement and the rotation of subgrains resulted in the changing of low angle subgian boundaries into ordinary high angle grain boundaries, which resulted in the formation of new fine grains.
作者 韩宝军 徐洲
出处 《钢铁研究学报》 CAS CSCD 北大核心 2009年第3期31-36,共6页 Journal of Iron and Steel Research
基金 国家自然科学基金资助项目(50471017)
关键词 多轴锻造 强变形 晶粒细化 铁镍合金 multi-axial forging severe plastic deformation grain refinement Fe-32%Ni alloy
  • 相关文献

参考文献20

  • 1徐洲.Fe-32Ni合金高温变形与再结晶行为[J].金属热处理,1999,24(6):3-6. 被引量:6
  • 2Iwahashi Y, Horita Z, Nemoto M, et al. An Investigation of Microstructural Evolution During Equal Channel Angular Pressing [J]. Acta Mater,1997,45:4733.
  • 3Humphreys F J, Prangnell P B, Bowen JR, et al. Developing Stable Fine-Grain Microstructure by Large Strain Deformation [J]. Phil Trans R Soc Lond, 1999,357 : 1663.
  • 4小林千紘,楊続躍,三浦博己,ほか.銅の195Kにぉける大ひずみ多軸加工後の微細粒組織の生成[A].佐々木厳 右京良雄,日本金属学会第133回講演大会講演概要集[C].札幌:北海道大学,2003.598.
  • 5金泉林.一个新的动态再结晶过程的分析模型[J].塑性工程学报,1994,1(1):3-13. 被引量:20
  • 6Valiev R Z, Krasilnikov N A, Tzenev N K. Plastic Deformation of Alloys With Submicron Grained Structure [J]. Mater Sci Eng, 1991,137A: 35.
  • 7Valiev R Z, Krasilnikov N A. Formation of Submicrometre-Grained Structure in Magnesium Alloy Due to High Plastic Strains [J]. J Mater Sci Lett, 1990,9: 1445.
  • 8Valiev R Z, Koznikov A V, Mulyukov R R. Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation [J]. Mater Sci Eng, 1993,168A: 141.
  • 9Umemoto M. Nanocrystallization of Steels by Severe Plastic Deformation [J]. Mater Trans, 2003,44 : 1900.
  • 10Kimura Y, Takaki S. Microstructural Changes During Annealing of Work Hardened Mechanically Milled Metallic Powders [J]. Trans JIM, 1995,36(2) : 289.

二级参考文献28

  • 1田村今男 牧正志.日本学术振兴会耐热金属材料第123委研究报告[J].-,1978,19(3):339-339.
  • 2Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci[J], 2000, 45:103
  • 3Nakashima K, Horita Z, Nemoto M, Langdon T G. Acta Materialia[J], 1998, 46:1 589-1 599
  • 4Tsuji N, Ueji R, Minamino Y. Nanoscale Crystallographic Analysis of Ultrafine Grained IF Steel Fabricated by ARB Process[J]. Scripta Materialia, 2002, 47:69-76
  • 5Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K. Acta Materialia[J],2002, 50:2 075-2 084
  • 6Valiahmetov O R, Galeyev R M, Salishchev G A. Fiz Metall Metalloved[J], 1990, 10:204
  • 7Masafumi Noda et al. Japan Inst Metals[J], 2000, 64(5): 395
  • 8Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H.Nature Mater[J], 2002, 1: 45
  • 9Yamakov V, Wolf D, Phillpot S R, Gleiter H. Acta Mater[J],2002, 50:5 005
  • 10Gray Ⅲ G T. Acta Metall[J], 1988, 36(7): 1 745-1 754

共引文献30

同被引文献17

  • 1杨长胜,程海峰,唐耿平,李效东,楚增勇,周永江.磁控溅射铁磁性靶材的研究进展[J].真空科学与技术学报,2005,25(5):372-377. 被引量:20
  • 2魏芳荣,李家俊,李群英,李建明,杜希文,师春生,赵乃勤.螺旋压缩弹簧应力松弛性能的动态试验研究[J].金属热处理,2007,32(4):47-50. 被引量:18
  • 3张英会.弹簧手册[M].北京:机械工业出版社,2008.
  • 4Rohde R W. Stress relaxation[J]. Acta Metallurgica, 1981, 29:41-52.
  • 5Fox A. Residual stress and stress relaxation[M]. New York : Plenum Press, 1984:183 - 192.
  • 6Del Llano L V, Rubio C G, Meamacque G, et al. Stress relief effect on fatigue and relaxation of compression springs[J]. Materials & Design, 2007, 28..1130-1134.
  • 7Lee D, Hart E W. Stress relaxation and mechanical behavior of metals[J]. Metallurgical Transactions, 1971, 2: 1245-1248.
  • 8Han Baojun, Xu Zhou. Microstructural evolution of Fe 32%Ni alloy during large strain multi-axial forging[J]. Materials Science and Engineering, 2007, A447 : 119-124.
  • 9白明远,刘新灵,张卫方.65Mn弹簧的贮存寿命预测[J].失效分析与预防,2007,2(4):10-13. 被引量:13
  • 10金尧,魏楠.金属高温应力松弛行为研究[J].机械强度,1997,19(3):57-60. 被引量:21

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部