期刊文献+

挖泥船泥浆管道输送流速的自适应预估控制 被引量:4

Self-adaptive predictive control of slurry transportation-rate in the dredging pipeline
下载PDF
导出
摘要 针对挖泥船泥浆管道输送流速控制的大惯性、大时滞、参数时变和建模困难等特点,提出一种单神经元自适应预估控制方案.该方案利用神经网络的自学习能力,对系统结构、参数、不确定性和非线性进行学习,结合Marsik和Streic提出的无辨识自适应控制算法对控制参数进行在线修正,在控制方案中加入Smith预估器,利用搜索寻优的方法对时变的时滞进行在线优化,提高了预估算法的鲁棒性和适应能力.通过现场实验证明了本控制方法的有效性,在疏浚施工环境变化,时滞较大的条件下仍然能够使泥浆流速基本保持稳定,具有较强的抗干扰能力和良好的跟踪性能. A new single neuron self-adaptive predictive scheme is introduced for controlling the slurry transportation- rate in the dredging pipeline. To deal with such a process of high inertia, long time-delay, time-varying parameters and the difficulty in modeling, this scheme makes use of the self-learning capability of the neuron network to study the control sys- tem structure, parameters, uncertainties and nonlinear characteristics; combines with the identification-free self-adaptive control algorithm proposed by Marsik and Strejc to carry out the on-line adjustment of control variables; incorporates the Smith predictor and employs the optimization searching algorithm for on-line optimizing the time-delay parameter to enhance the robustness and adaptability of the predictive algorithm. Field experiments are also carried out to test the performance of the proposed control scheme. Results show that the control performance is satisfactory in various dredg- ing environments, even the time-delay is significant; the control system compensates external disturbances and exhibits desirable tracking ability.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第3期309-312,共4页 Control Theory & Applications
基金 浙江省湖州市科技攻关计划资助项目(2004GG45).
关键词 疏浚 泥浆管道输送 流速控制 自适应预估控制 dredging slurry pipeline transport transportation-rate control self-adaptive predictive control
  • 相关文献

参考文献8

  • 1MIEDEMA S A. Automation of a cutter suction dredge[C]//Proceedings of the Sixteenth Worm Dredging Congress. Kuala Lumpur, Malaysia: [s.n.], 2001.
  • 2IHC. Renewing the dredging controls of US hopper dredger ESSAYONS[J]. Ports and Dredging, 2003, E160:24 - 26.
  • 3WANG Q G, TANG J Z. Research on expert system for dredging production optimization[C]//Proceedings of the 6th World Congress on Control and Automation. Dalian, China: [s.n.], 2006.
  • 4邵家骧.柴油机调速系统仿真与设计[C]//中国内燃机学会首届学术年会论文选集.上海:中国内燃机学会秘书处,1985.
  • 5MARSIK J, STREJC V. Application of identification-free algorithms for adaptive control[J]. Automatica, 1989, 25(2): 273 - 277.
  • 6江青茵.无辨识自适应控制预估算法及应用[J].自动化学报,1997,23(1):107-111. 被引量:31
  • 7LIUNG L. System Identification: Theory for the User(2nd Editon)[M]. Beijing: Tsinghua University Press, 2002.
  • 8顺晃,舒迪前.智能控制系统及其应用[M].北京:机械工业出版社.1995.

共引文献30

同被引文献46

  • 1王光谦.河流泥沙研究进展[J].泥沙研究,2007,32(2):64-80. 被引量:88
  • 2Kokpinar M A, Gogus M. Critical flow velocity in slurry transporting horizontal pipelines[J]. J of Hydraulic Engineering, 2001, 127(9): 763-771.
  • 3Cappellini V.,Chiuderi A.and Fini S.,1994,Neural networks in remote sensing multisensor data processing,Proceedings 14th EARSeL symposium,Goteborg,Sweden,6-8,June,pp.457-462.
  • 4BORST C, SHER F, MULDER M, et al. Ecological approach to sup- port pilot terrain awareness after total engine failure [J]. Journal of Aircraft, 2008, 45(3): 159 - 171.
  • 5MEJIAS L, FITZGERALD D, ENG P, etal. Forced Landing Tech- nologies for Unmanned Aerial Vehicles: Towards Safer Opera- tions [M]. Austria: Aerial Vehicles Press, 2009.
  • 6ELLA A. Emergency landing automation aids: an evaluation in- spired by US airways flight 1549 [C]//AIAA Infotech@Aerospace 2010. American: AIAA, 2010, 8:1 - 17.
  • 7ENG P, MEJIAS L, LIU X, et al. Automating human thought pro- cesses for a UAV forced landing [J]. Journal of Intelligent and Robotic Systems, 2010, 57(1/4): 329 - 349.
  • 8MEJIAS L, ENG E Experimental validation of an unpowered un- manned aerial system: application to forced landing scenarios [C] //Digital Proceedings of the 2012 International Conference on Un- manned Aircraft Systems (ICUAS'12). Australia: QUT Eprints, 2012, 5:1 - ii.
  • 9MEJIAS L, Eng E Controlled emergency landing of an unpowered unmanned aerial system [J]. Journal of Intelligent & Robotic Sys- tems, 2013, 70(1/4): 421 - 435.
  • 10YANUSHEVSKY R. Guidance of Unmanned Aerial Vehicles [M]. American Boca Raton : CRC Press, 2011.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部