期刊文献+

脑电非线性动力学快速分析与癫痫脑电分析 被引量:8

Nonlinear Dynamic Fast Analysis and Analysis of Epileptic′s EEG
下载PDF
导出
摘要 通过分析比较非线性时间序列动力学分析过程中使用的各种算法,选择出适合脑电分析的算法。这些算法时空复杂度较高,计算耗时。我们对这些算法进行了串行优化和改进,使其时间复杂度有不同程度的降低,并提高了其准确度;再对其进行并行化,进一步提升了算法效率。最后整个计算过程运行时间缩短为优化前运行时间的1/50。在此基础上,我们提出了脑电非线性动力学快速分析系统的设计,并使用该系统分析了癫痫脑电数据,取得了良好的结果。 We chose several algorithms that are fit for analyzing EEG by comparing many algorithms used in the analysis of nonlinear time series. These algorithms are complex on both time and space, and they spend a lot of time computing. These algorithms were optimized and modified to reduce their complexity on time and to improve their precision. To improve the efficiency of these algorithms, we paralleled these algorithms. The whole computing process cost 1/50 of the time cost by the original algorithms finally. After that, an EEG's nonlinear dynamic fast analysis system was designed. At last, we used the EEG's nonlinear dynamic fast analysis system to analyze epileptic's EEG and have got good result.
出处 《生物医学工程研究》 2008年第3期154-157,162,共5页 Journal Of Biomedical Engineering Research
基金 国家自然科学基金资助项目(60434010)
关键词 脑电 非线性系统 关联维 优化及改进 并行化 :Electroencephalogrmn Nonlinear system Correlation dimension Optimize and modify Parallelled
  • 相关文献

参考文献8

  • 1Kannathal N,Rajendra Acharya U,Lim C M,et al.Characteriaztion of EEG:a comparative study[J].Computer Methods and Pwgrams in Biomedicine,2005,80(1):17-23.
  • 2Takens F.Detecting strange attractors in turbulence[J].Lecture Notes in Mathematics,1981,898(1):366-381.
  • 3SHAO Chenxi SHEN Linfeng WANG Xufa and YIN Shijie(1. Department of Computer Science & Technology, University of Science & Technology of China, Hefei 230027, China,2. Department of Neurology, University of Medical Science of Anhui, Hefei 230022, China).Nonlinear analysis of the alcoholic's EEG[J].Progress in Natural Science:Materials International,2002,12(12):915-919. 被引量:3
  • 4Kim H S,Eykhoh R,Salas J D.Nonlinear dynamics,delay times,and embedding windows[J].Physica D,1999,127(1-2):48-60.
  • 5Cao LY.Practical method for determining the minimum embedding dimension of a scalar time series[J].Physica D,1997,110(1 -2):43-50,
  • 6Grassberger P,Procaccia I.Characterization of strange attractors[J].Physical Review Letters,1983,50(5):346-349.
  • 7Andrzejak R G,Lehnertz K,Mormann F,et al.Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity:Dependence on recording region and brain state[J].Physical Review E,2001,64(6):061907.
  • 8Martinerie J,Adam C,Quyen MLV,et al.Epileptic seines can be anticipated by nonlinear analysis[J].Nature Medicine,1998,4(10):1173-1176.

二级参考文献8

  • 1Packard,N.H. et al.Geometry from a time series[].Physical Review.1980
  • 2Grassberger,P. et al.Characterization of strange attractors[].Physical Review.1983
  • 3Cao,L.Y.Practical method for determining the minimum embedding of a scalar time series[].Physica D Nonlinear Phenomena.1997
  • 4Stam,C.J. et al.Use of non-linear EEG measures to characterize EEG changes during mental activity[].Electroencephalography.1996
  • 5Lai,Y. C. et al.Effective scaling regime for computing the correlation dimension from chaotic time series[].Physica D Nonlinear Phenomena.1998
  • 6Rosenstein,M.T. et al.Reconstruction expansion as a geometry-based framework for choosing proper delay times[].Physica D Nonlinear Phenomena.1994
  • 7Zhang,X. L. et al.Event related potentials during object recognition tasks[].Brain Research Bulletin.1995
  • 8Babloyantz,A,et al.Low-dimensional chaos in an instance of epilepsy[].Proceedings of the National Academy of Sciences of the United States of America.1986

共引文献2

同被引文献90

引证文献8

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部