期刊文献+

约束三角剖分在雨量等值线的应用

Triangulation Bound in the Application of Rainfall Isogram
下载PDF
导出
摘要 雨量等值线在水文、防汛领域应用广泛,Delaunay三角剖分具有空外接圆和最大的最小角度两个良好性质,对于非规则分布的离散点数据进行三角剖分内插是生成等值线的最常用的算法,但实际应用中往往都术是凸壳进行三角化,而是有限定边(或限定点)对三角剖分进行约束。该文在标准Delaunay三角剖分基础上,分析了逐点插入法的基本原理,基于此提出了一种解决有限定边的约束三角网格剖分生成等值线的方法,给出了限定边进行三角剖分的算法,同时对边界采用网格加密和邻域内插算子进行边界附件插值,提高等值线的边界拟合精度,并在雨量等值线生成中得到较好应用。 Rainfall isogram have a wide range of applications in the fields of hydrology and flood prevention, due to delaunay triangulation with empty circumcircle and the smallest angle of the two good property, the discrete data delaunay triangulation interpolation to generate isograms is a most commonly algorithm,but practical applications are often not carried out convex hull triangulation, sometimes have limited-lines (or limited-points) to the triangulation. This article analysis the basic principles of the point-by-point insertion, and applys this method to solute the limited-lines triangulation based on the standard delaunay triangulation isograms method,and gives a limited-lines for triangulation algorithm, to refine and interpolate of the border using a neighborhood correlation coefficients,to improve the boundary contour fitting precision, this method is a good applicaton in rainfall isograms.
作者 梅胜全 MEI Sheng-quan (Information Engineering Institute, Chengdu Univerisity of Science and Technology, Chengdu 610059, China)
出处 《电脑知识与技术》 2009年第3期1770-1772,共3页 Computer Knowledge and Technology
关键词 三角剖分 限定边 凸壳 等值线 triangulation limited-lines convex hull isogram
  • 相关文献

参考文献4

二级参考文献10

  • 1胡桂松.由“费尔马点”问题引发的联想[J].数学通报,2005,44(1):35-37. 被引量:11
  • 2张玉峰,朱以文.有限元网格自动生成的典型方法与研究前瞻[J].武汉大学学报(工学版),2005,38(2):54-59. 被引量:16
  • 3Mavriplis D.J.Unstructured Mesh Generation and Adaptivity[R].Technical Report ICASE 95-26.NASA Langley,Hampton VA,Apr.1995.
  • 4M oller P.,Hansbo P.On Advancing Front Mesh Generation in Three Dimensions[J].Intl.J.Numer.Meth.Eng.,1995,38:3551-3569.
  • 5Shimada K.,Gossard D.C.Bubble Mesh: Automated TriangularMeshing of Non-manifold Geometry by Sphere Packing[A].Third Symp.on Solid Modeling and Appls.[C],May 1995.409-419.
  • 6Hoppe H.Progressive Meshes[A].SIG-GRAPH ′96 Proc[C],1996.99-108.
  • 7Tsai V J D.Delaunay Triangulations in TIN Creatation:an Overview and a Linear-time Algorithm[J].Int Journal of GIS,1993,7(6):501-524.
  • 8Watson D F.Computing the n-dimension Delaunay Tesselation with Application to Voronoi Polytopes[J].Computer Journal,1981,24(2):167-172.
  • 9Sloan S W.A Fast Algorithm for Constructing Delaunay Triangulation in the Plane[J].Advanced Engineering Software,1987,9(1):34-55.
  • 10Lee D T,Schachter B J.Two Algorithm for Constructing a Delaunay Triangulation[J].International Journal of Computer and Information Science,1980,9(3):219-242.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部