期刊文献+

基于新型AFCM的多传感器目标跟踪航迹融合 被引量:4

Multi-Sensor Target Track Fusion Based on AFCM
下载PDF
导出
摘要 多目标跟踪是多传感器系统信息融合中的核心技术之一。采用新型的AFCM模糊算法实现对多目标交叉状态下航迹数据关联。该算法定义了一种新的度量空间中的距离,通过新的距离定义有效抑制含有噪声点的样本及目标航迹交叉在迭代中对数据关联聚类中心点的大幅偏差。同时应用改进带加权的航迹融合算法对红外和毫米波雷达传感器测量的航迹数据进行融合。仿真试验证明,新的算法在综合多传感器探测优势的基础上,对航迹的融合结果优于SF算法。新的数据关联算法和改进的加权航迹融合算法为多源信息融合提供了一种可靠有效的多目标跟踪技术。 Multi-target tracking is one of the core technologies in the multi-sensor information fusion. A novel AFCM algorithm is proposed aiming at realizing the multi-target tracking under the cross tracks situation. This new algorithm defines a new distance in new metric space, meanwhile using the improved weighted track fusion algorithm to realize IR and MMW radar sensors' track fusion. The new metric has been properly verified and the clustering output improves the data association. Experiments have proved that the novel system has an outstanding performance over normal system from considering the advantages of the multi-sensor and the process complexity. The application of the AFCM optimizes the process of the track fusion and provides a reliable method to realize the multi-target tracking.
出处 《传感技术学报》 CAS CSCD 北大核心 2009年第3期358-361,共4页 Chinese Journal of Sensors and Actuators
基金 航天创新基金资助 航天支撑基金 国家自然科学基金项目支持(90306008)
关键词 AFCM 距离 加权 航迹融合 多目标跟踪 AFCM distance weights track fusion multi-target tracking
  • 相关文献

参考文献7

  • 1Bar-Shalom Y, Fortmann T E. Tracking and Data Association [M]. New York, Academic Press, 1988.
  • 2Chang KC, Bar-Shalom Y. A Simplification of the JPDAM Algorithm[J]. IEEE Trans. on AC. 1986,31(10).
  • 3Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York.. Plenum Press, 1981.
  • 4Trivedi M M, Bezdek J C. Low-Level Segmentation of Aerial Images with Fuzzy Clustering[J]. IEEE Trans. SMC, 1986,4 (16) :589-598.
  • 5Singer R, Kanyuck. Computer Control of Multiple Site Track Correlation[J]. Automatica, 1971, (7).. 455-464.
  • 6杨万海.多传感器数据融合及其应用[M].西安:西安电子科技大学出版社,2000.4.
  • 7Wu Kuo-Lung, Yang Miin-Shen. Alternative C-Means Clustering Algorithms [J]. Pattern Recognition 35 (2002) : 2267- 2278.

同被引文献47

  • 1张丽梅,乔立山,陈松灿.基于张量模式的特征提取及分类器设计综述[J].山东大学学报(工学版),2009,39(1):6-14. 被引量:5
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3付海艳,张诚一.基于FCM和粗糙集属性重要度理论的综合评价系统[J].计算机应用,2006,26(6):1479-1481. 被引量:12
  • 4程婷,何子述.一种新的基于模糊聚类的多目标跟踪算法[J].系统工程与电子技术,2006,28(9):1332-1334. 被引量:4
  • 5BEZDEK J C. Pattern recognition with fuzzy objective function algo- rithms [ M]. New York: Plenum Press, 1951.
  • 6AZIZ A M, TUMMALA M, CRISTI R. Fuzzy logic data correlation approach in multisensor-multitarget tracking systems [ J]. Signal Processing, 1999, 76(2) : 195 -209.
  • 7OUSSALAH M, SCHUTTER J D. Hybrid fuzzy probabilistic data association filter and joint probabilistic data association filter [ J]. Information Sciences, 2002, 142 (1/4) : 195 -226.
  • 8ATANASSOV K. Intuitionistic fuzzy sets [ J]. Fuzzy Sets and Sys- tems, 1986, 20 (1): 87-96.
  • 9IAKOVIDIS D K, PELEKIS N, KOTSIFAKOS E, et al. Intuitionis- tic fuzzy clustering with applications in computer vision [ C ]// ACIVS 2008: Proceedings of the 10th International Conference on Advanced Concepts for Intelligent Vision Systems, LNCS 5259. Ber- lin: Springer, 2008:764-774.
  • 10Lance M.Kaplan,William Dale Blair,Yaakov Bar-Shalom.Simulations Studies of Multisensor Track Association and Fusion Methods[C].Proc.IEEE Aerospace Conf,2006.1-16.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部