期刊文献+

虾仁图像细化曲线长度与体重相关性研究 被引量:1

Calculation of the Refinement Curve Length of Shrimp and Its Correlation with Weight
下载PDF
导出
摘要 虾仁细化曲线长度是虾仁质量预测的一个重要因素,为了提取虾仁细化曲线长度,对机器视觉所采集的白虾虾仁图像进行形态学处理,减少细化处理后细化图像曲线的分支,经过对细化曲线每个像素为中心的3×3邻域分析,判断出细化曲线的分支,提出一种端点擦除方法去除分支,通过平均值补偿方法还原虾仁细化曲线并计算其长度。经过计算发现,虾仁细化曲线长度与体重函数关系的相关系数为0.894,虾仁面积与体重关系模型的相关系数为0.939,虾仁细化曲线长度、虾仁面积与体重关系模型的相关系数为0.954,可见虾仁细化曲线长度提高了虾仁体重预测的精度。 Refinement curve length of shrimp is an important factor in its weight prediction.Morphological filter was required to reduce branches of the refinement curve in order to get this value.The existence of branches was correctly judged by 3×3 neighborhood analysis of every pixel on the refinement curve.Then the length of refinement curves which contain branches could be calculated by erasing the endpoints to remove branches and average compensation method.The conclusion showed that the correlation was obvious,with the correlation coefficient of 0.894 between its refinement curve length and weight,0.939 between the size and weight,and prediction correlation coefficient of 0.954 between comprehensive details both of the length and size of shrimp and the weight after modeling.The results indicate that it's promising to increase the predicting accuracy with refinement curve length.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2009年第3期172-175,共4页 Transactions of the Chinese Society for Agricultural Machinery
关键词 虾仁 机器视觉 图像细化 分支 体重 Shrimp Computer vision Refinement Branch Weight
  • 相关文献

参考文献11

  • 1Harvey E. The accuracy and precision of underwater measurements of length and maximum body depth of southern bluefin tuna ( Thunnus rnaccoyii ) with a stereo-video camera system [ J ]. Fisheries Research, 2003, 63 (3) : 315 - 326.
  • 2彭波,孙一林,崔永普.渔场夜间监控系统图像去噪算法[J].农业机械学报,2005,36(10):97-100. 被引量:4
  • 3White D J, Svellingen C, Strachan N J C, Automated measurement of species and length of fish by computer vision [J ]. Fisheries Research, 2006, 80(2-3): 203-210.
  • 4林艾光,孙宝元,矢田贞美.基于机器视觉的虾夷扇贝分级检测方法研究[J].水产学报,2006,30(3):397-403. 被引量:18
  • 5Misimi E, Erikson U, Digre H, et al. Computer vision-based evaluation of pre-and postrigor changes in size and shape of atlantic cod (Gadus morhua) and atlantic salmon (Salmo salar) fillets during rigor mortis and ice storage: effects of perimortem handling stress[J ]. Journal of Food Science, 2008, 73(2):57-68.
  • 6Kassler M. Robotics and prawn-handling[J]. Robotica, 1990, 8. 299-301.
  • 7Ling P P, Searcy S W. Feature extraction for a machine-vision-based shrimp deheader[J ]. Transactions of the ASAE, 1991, 34(6): 2 631-2 636.
  • 8Luzuriaga D A, Balaban M O, Yeralan S. Analysis of visual quality attributes of white shrimp by machine vision[J ]. Journal of Food Science, 1997, 62(1): 113-118.
  • 9Luzuriaga D A. Application of computer vision and electronic nose technologies for quality assessment of color and odor of shrimp and salmon[J].Dissert. Abst. Int. Part B: Sci. Eng., 2000,60 (9): 4 323.
  • 10Harbitz A. Estimation of shrimp ( Pandalus borealis ) carapace length by image analysis [ J ]. ICES Journal of Marine Science, 2007, 64(5) : 939-944.

二级参考文献20

  • 1柏连发,周建勋,张保民.微光CCD噪声测试研究[J].南京理工大学学报,1994,18(3):54-56. 被引量:4
  • 2章毓晋.图像工程(上册)-图像处理和分析[M].北京:清华大学出版社,1999.254-269.
  • 3Marpe D,Cycon H L,Zander G,et al.Context-based denoising of images using iterative wavelet thresholding.Proc.SPIE,2002,4671:907~914.
  • 4Donobo D.De-noising by soft-thresholding.IEEE Trans.Inform.Theory,1995(41):613~627.
  • 5[美]KennethR Castleman 朱志刚 译.数字图像处理[M].北京:电子工业出版社,1998..
  • 6陈兵旗 孙明.Visual c++实用图像处理[M].北京:清华大学出版社,2004.84-88.
  • 7朱志刚 石定机.数字图像处理[M].电子工业出版社,2002..
  • 8波部忠重,小菅貞男.标准原色圖鑑全集.3,貝[M].大坂:保育社,1967.
  • 9境一郎.日本におけるほたて貝增養殖[M].札幌:水產北海道協会,1976.
  • 10北海道水产新聞社.新版·ホタテガイ取扱の手引き[M].札幌:北海水产新闻社,1992.

共引文献22

同被引文献31

  • 1秦筱楲,蔡超,周成平.一种有效的骨架毛刺去除算法[J].华中科技大学学报(自然科学版),2004,32(12):28-31. 被引量:31
  • 2姜泳水,唐金辉,陈学佺.二值图像中物体几何主轴的提取方法[J].计算机工程,2005,31(18):56-58. 被引量:11
  • 3吴选忠.Zhang快速并行细化算法的扩展[J].福建工程学院学报,2006,4(1):89-92. 被引量:20
  • 4唐瑶,张锡哲,王钲旋.一种中国书法作品的骨架提取算法[J].工程图学学报,2006,27(5):98-104. 被引量:5
  • 5李文彬,阚江明,孙仁山.立木枝杈点自动识别方法[J].北京林业大学学报,2007,29(4):1-4. 被引量:9
  • 6Bahar Gumiis, Murat 0 Balaban, Mustafa Unlilsayin. Machinevision applications to aquatic food a review[J]. Turkish Journal ofFisheries and Aquatic Sciences,2011,11:171-181.
  • 7Murat 0 Balaban, Chombeau, Bahar Gumus, et al. Qualityevaluation of alaska pollock-part 1 weight predition[J]_ Journal ofAquatic Food Product,2011,21(1) :59-71.
  • 8Murat 0 Balaban, Melanie, Chombeau, Dilsat, et al. Predictionof the weight of alaskan pollock using image analysis technology[J]. Journal of Food Science,2010,75(8):552-556.
  • 9Bahar Gtimii?, Murat 0 Balaban. Prediction of the weight ofaquacultured rainbow trout (oncorhynchus mykiss ) by imageanalysis[J]. Journal of Aquatic Food Product Technology, 2010,19(3/4):227-237.
  • 10Murat 0 Balaban, Giilgiin F Unal §engor,Mario Gil Soriano,et al. Using image analysis to predict the weight of alaskansalmon of different species[J]. Jounal of Food Science,2010,75(3):157-162.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部