期刊文献+

基于测地线距离的广义高斯型Laplacian特征映射 被引量:9

Geodesic Distance-Based Generalized Gaussian Laplacian Eigenmap
下载PDF
导出
摘要 传统的Laplacian特征映射是基于欧氏距离的近邻数据点的保持,近邻的高维数据点映射到内在低维空间后仍为近邻点,高维数据点的近邻选取最终将影响全局低维坐标.将测地线距离和广义高斯函数融合到传统的Laplacian特征映射算法中,首先提出了一种基于测地线距离的广义高斯型Laplacian特征映射算法(geodesic distance-based generalized Gaussian LE,简称GGLE),该算法在用不同的广义高斯函数度量高维数据点间的相似度时,获得的全局低维坐标呈现出不同的聚类特性;然后,利用这种特性进一步提出了它的集成判别算法,该集成判别算法的主要优点是:近邻参数K固定,邻接图和测地线距离矩阵都只构造一次.在木纹数据集上的识别实验结果表明,这是一种有效的基于流形的集成判别算法. The conventional Laplacian Eigenmap preserves neighborhood relationships based on Euclidean distance, that is, the neighboring high-dimensional data points are mapped into neighboring points in the low-dimensional space. However, the selections of neighborhood may influence the global low-dimensional coordinates. In this paper, both the geodesic distance and generalized Gaussian function are incorporated into Laplacian eigenmap algorithm. At first, a generalized Gaussian Laplacian eigenmap algorithm based on geodesic distance (GGLE) is proposed. The global low-dimensional coordinates obtained by GGLE have different clustering properties when different generalized Gaussian functions are used to measure the similarity between the high-dimensional data points. Then, this paper utilizes these properties to further propose the ensemble-based discriminant algorithm of the above-motioned GGLE. The main advantages of the ensemble-based algorithm are:The neighborhood parameter K is fixed and to construct the neighborhood graph and geodesic distance matrix needsone time only. Finally, the recognition experimental results on wood texture dataset show that it is an efficient ensemble discriminant algorithm based on manifold.
出处 《软件学报》 EI CSCD 北大核心 2009年第4期815-824,共10页 Journal of Software
基金 国家自然科学基金Nos.60773016,60373029 国家高技术研究发展计划(863)No.2007AA01Z168 国家教育部博士点基金No.20050004001 四川教育厅重点项目No.07ZA121~~
关键词 流形学习 Laplacian特征映射 广义高斯函数 测地线距离 集成 manifold learning Laplacian eigenmap generalized Gaussian function geodesic distance ensemble
  • 相关文献

参考文献1

二级参考文献8

  • 1R.O. Duda, P. E. Hart, D. G. Stork. Pattern Classification.New York: John Wiley & Sons, 2001.
  • 2V.D. Silva, J. B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. In: Advances of Neural Information Proceeding Systems 15. Cambridge, MA: MIT Press, 2002. 705~712.
  • 3J.B. Tenenbaum, V. de Silva, J. C. Langford. A global geometric framework for nonlinear dimensionality reduction.Science, 2000, 90(5500): 2319~2323.
  • 4S. T. Roweis, K. S. Lawrance. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323~2326.
  • 5M. Belkin, P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2001,151(6): 1373~1396.
  • 6V.N. Vapnik. Statistical Learning Theory. New York: John Wiley & Sons, 1998.
  • 7T.G. Dietterich. Ensemble learning. In: The Handbook of Brain Theory and Neural Networks, 2nd Edition. Cambridge, MA:MIT Press, 2002.
  • 8M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum. The Isomap algorithm and topological stability. Science, 2002, 295(4): 7a.

共引文献23

同被引文献134

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部