期刊文献+

Mean-shift跟踪中的状态分析及处理 被引量:3

Status analysis and treatment of mean-shift tracking
下载PDF
导出
摘要 在Mean-shift算法中,对跟踪状态的误判会引起错误的模板调整策略,造成目标丢失。提出了一种新的跟踪状态分析方法,该算法首先通过分析目标特征与背景特征的相对关系,引入特征增强函数,并在此基础上构造了新的背景模板。然后通过对跟踪中各模板相似系数动态变化过程的综合分析,准确判定目标所处跟踪状态,以采取相应的模板调整策略。实验表明,该算法可以有效增强Mean-shift算法在复杂条件下的跟踪效果,具有较好的稳健性。 Misjudgment on tracking status will result in the wrong template update strategy in mean-shift and loss the object. This article presents a novel tracking status analysis method.Firstly,through the comparison of features in target and background,a feature-enhancement function is introduced and a new background template is constructed based on it.Then,after comprehensive analysis of the dynamic changing process of each similarity coefficient during tracking,the proposed algorithm can accurately determines the tracking status and takes corresponding template update strategy.Experimental results show that the proposed algorithm can effectively enhance the tracking effect under complex condition and is more robust.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第2期24-27,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.30570473 重庆市信息产业发展基金No.20051022~~
关键词 目标跟踪 均值漂移 跟踪状态分析 object tracking mean-shift tracking status analysis
  • 相关文献

参考文献8

  • 1Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 2Nummiaro K,Koller-Meier E,Van G L.Color features for tracking non-rigid objects[J].Special Issue on Visual Surveillance,Journal of Automation,2003,29(3):345-355.
  • 3程建,杨杰.一种基于均值移位的红外目标跟踪新方法[J].红外与毫米波学报,2005,24(3):231-235. 被引量:42
  • 4Comaniciu D,Ramesh V,Meet P.Real-time tracking of non-rigid objects using mean shift[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Hilton Head Island,SC,USA,2000,2:142-149.
  • 5朱胜利,朱善安.基于卡尔曼滤波器组的Mean Shift模板更新算法[J].中国图象图形学报,2007,12(3):460-465. 被引量:20
  • 6孙中森,孙俊喜,宋建中,乔双.一种抗遮挡的运动目标跟踪算法[J].光学精密工程,2007,15(2):267-271. 被引量:30
  • 7Birchiield S.Test aequences for face tracking[EB/OL].(2008-07).http://www.ces.clemaon.edu/~sth/research/headtracker/.
  • 8Iscaps C.Pets2006 Dataset S7 Camera2[EB/OL].(2008-07).http:// ftp.cs.rdg.ac.uk/PETS2006/S3-T70-A.zip.

二级参考文献16

  • 1Fukunage K,Hostetler L D.The estimation of the gradient of a density function with application in pattern recognition[J].IEEE Transactions of Information Theory,1975,21 (1):32 - 40.
  • 2Cheng Y.Mean shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):790 -799.
  • 3Comaniciu D,Meer P.Mean shift analysis and application[A].In:Proceedings of the Seventh IEEE International Conference on Computer Vison[C],Washingtan,DC,USA,1992,2:1197-1203.
  • 4Comaniciu D,Meer P.Mean shift:A robust application toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603 - 619.
  • 5Comaniciu D,Meer P.robust analysis of feature spaces:color Image Segmentation[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)[C],San Juan,Puerto Rico,1997:750 -755.
  • 6Comaniciu D,Ramesh V,Meer P.The variable bandwidth Mean shift and data-driven scale selection[A].In:Proceedings of IEEE International Conference on Computer Vision (ICCV'01)[C],Vancouver,Canada,2001,1:438 -445.
  • 7Yang Changjiang.Efficent Mean-Shift tracking via a new similarity measure[A].In:IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)[C],San Diego,California,USA,2005,1:176- 183.
  • 8Collins R T.Mean-Shift blob tracking through scale space[A].In:Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'03)[C],Madison,Wisconsin,USA,2003,2:234 - 240.
  • 9Nummiaro K,Koller-Meier E,Van Goo L.Color features for tracking non-rigid objects.Special Issue on Visual Surveillance[J].Chinese Journal of Automation,2003,29 (3):345 - 355.
  • 10Nguyen H T,Worring M,Rein van den Boomgaard.Occlusion robust adaptive template tracking[A].In:Proceedings of Eighth International Conference on Computer Vision (ICCV'01)[C],Vancouver,British Columbia,Canada,2001,1:678 -683.

共引文献86

同被引文献32

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部