期刊文献+

多目标进化算法中变异算子的比较与研究 被引量:16

Comparison and research of mutation operators in multi-objective evolu-tionary algorithms
下载PDF
导出
摘要 提出了一种适应于多目标进化算法的变异越界处理策略,成功地将这些变异算子应用到多目标进化优化问题中,从多目标优化收敛性的角度比较了这些变异算子的性能。通过一组实验表明这种越界处理方法是非常有效的,单目标优化中的这些变异算子具有与多项式变异算子相当的分布性,同时取得了更好的收敛性能。 This paper proposes a mutation over-flow dealing method to fit for the environment of MOEAs,and applies these operators successfully to multi-objective optimization problems.Then it compares these operators' performance through its convergence quality,and it demonstrates that this over-flow dealing method is effective through a group of experiments,the mutation operators used in single-objective optimization have the respectable distribution to polynomial mutation and achieve better convergence qua]ity.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第2期74-78,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.60773047 教育部留学回国人员科研启动基金No.教外司留[2005]546号 湖南省自然科学基金No.05JJ30125 湖南省教育厅重点科研项目No.06A074~~
关键词 多目标优化 多目标进化算法 变异算子 收敛性 非支配解集 multi-objective optimization Multi-Objective Evolutionary Algorithm (MOEA) mutation operators convergence quality non-dominated solution sets
  • 相关文献

参考文献13

  • 1Schaffer J D.Some experiments in machine learning using vector evaluated genetic algorithms[D].Vanderbih University,1984.
  • 2Spears W M.Crossover or mutation?[C]//Whitley L D.Foundations of Genetic Algorithms,Morgan Kaufmann,1993:221-237.
  • 3Falco I D,Coippa A D,Tarantino E.Mutation-based genetic algorithm:Performance evaluation[J].Applied Soft Computing,2002,1 (4):285-299.
  • 4Dai Xiao-ming,Zou Run-min,Sun Rong,et al.Convergence properties of non-crossover genetic algorithm[C]//Proceedings of the 4th World Congress on Intelligent Control and Automation,Shanghai,China,2002.
  • 5Eiben A E,Schoenauner M.Eolutionary computing[J].Irdormation Processing Letters,2002,82:1-6.
  • 6Michalewicz Z.Genetic algortithms+data structure=programs[M].Berlin:Springer-Verlag,1992.
  • 7Michalewicz Z,Fogel D B.How to solve it:Modern heuristics[M].Berlin:Springer-Verlag,2000.
  • 8Yao X,Liu Y.Fast evolution strategies[C]//Angeline P J,Reynolds R,McDonnell J,et al.Proc 4th IEEE Conf in Evolutionary Programming Ⅵ.Berlin,Germany:Springor-Verlag,1997.
  • 9Deb K,Goyal M.A combined genetic adaptive search(GeneAS) for engineering design[J].Computer Science and Informatics,1996,26(4):30-45.
  • 10Kalyanmoy D.Multi-ohjective genetic algorithms:Problem difficulties and construction of test problems[J].Evolufionary Computation,1999,7(3):351-357.

同被引文献152

引证文献16

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部