期刊文献+

多发性硬化症MR图像分割新算法研究 被引量:3

Novel segmentation algorithm for multiple sclerosis lesions in MR images
下载PDF
导出
摘要 提出了一种针对多发性硬化症病灶T2加权脑部磁共振(MR)图像的分割算法。根据多发性硬化症病灶和脑脊液在T2加权像上同表现为高亮度信号的特点,把模糊C均值分割算法与形态学方法相结合,提出了基于核模糊C均值的多发性硬化症病灶分割算法。该算法首先用改进的核模糊C均值算法做基础分割,再用形态学方法提取出多发性硬化症病灶得到最终分割结果。通过对多发性硬化症模拟脑部MR图像的分割结果表明,算法能够比较准确地分割多发性硬化症病灶。 A novel approach to the segmentation of Multiple Sclerosis(MS) lesions in T2-weighted Magnetic Resonance(MR) images is presented.According to the characteristic of MS lesions show the same high brightness with CerebroSpinal Fluid(CSF) in T2-weighted images,combining the strengths of the kernel fuzzy C-means algorithm and morphology characteristics of MS lesion tissues,the segmentation of MS lesions based on kernel fuzzy C-means algorithm is presented.The modified kernel fuzzy C-means algorithm is used to basic segmentation.Then the MS lesions are extracted by morphological method.The MS segmentation in simulated T2-weighted MR images show that the proposed algorithm can provide a powerful segmentation.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第2期176-178,共3页 Computer Engineering and Applications
基金 国家重点基础研究发展规划(973)No.2003CB716101 广东省科技计划项目(No.2007B010400057)~~
关键词 图像分割 核模糊C均值 多发性硬化症 segmentation of image kernel fuzzy C-means multiple sclerosis lesions
  • 相关文献

参考文献10

  • 1雷建明,黎朝茂,江先娣,廖耿.多发性硬化症36例临床分析[J].河北医学,2007,13(3):279-281. 被引量:1
  • 2Ardizzone E,Pirrnne B,Gambino O,et al.Two channels fuzzy Cmeans detection of multiple sclerosis lesions in multispectral MR images[C]//IEEE ICIP,2002.
  • 3Ao B,Dehak S M,Zhu Y M,et al.Automated segmentation of multiple sclerosis lesions in multispectral MR imageing using fuzzy clustering[J].Computers in Biology and Medicine,2000,30(1):23.
  • 4Pachai C,Zhu Y M,Grimand J,et al.A pyramidal approach for automatic segmentation of multiple sclerosis lesions in brain MRI[J].Computerized Medical Imaging and Graphics,1998,22(5):399.
  • 5Li L,Li X,Lu H,et al.MRI volumetric analysis of multiple sclerosis:methodology and validation[J],IEEE Trans on Nuclear Science,2003,50(5):1686.
  • 6Leemput K V,Maes F,Vandermeulen D,et al.Automated segmentation of multiple sclerosis lesions by model outlier detection[J].IEEE Trans on Medical Imaging,2001,20(8):677.
  • 7Bezek J C.Pattern recognition with fuzzy object function algorithms[M].New York:Plenum,1981.
  • 8余学飞,李彬,陈武凡.基于模糊核聚类的MR图像分割新算法[J].南方医科大学学报,2008,28(4):555-557. 被引量:5
  • 9Zhang D Q,Chen S C.A novel kernelized fuzzy c-means algorithm and segmentation of MRI data[J].Artff Intell Med,2004,32:37-52.
  • 10Chuang K S,Tzeng H L,Chen S,et al.Fuzzy c-means clustering with spatial information for image segmentation[J].Computerized Medical Imaging and Graphics,2006,30:9-15.

二级参考文献15

  • 1林亚忠,程跃斌,陈武凡.基于修正的分段模糊吉伯斯随机场模型的图像分割[J].计算机应用,2005,25(11):2606-2608. 被引量:1
  • 2冯前进,陈武凡.模糊马尔可夫场模型与图像分割新算法[J].南方医科大学学报,2006,26(5):579-583. 被引量:8
  • 3[2]Poser CM,Party DW,Schember L.et al.New diagnostic criteria for multiple sclerosis:guidelines for research protocols[J].Ann Neurol,1983,33(2):227-231.
  • 4[3]John FK.Rating neurologic in pairm ent in multiple sclerosis:an expanded disability status scale (EDSS)[J].Neurology,1983,33(11):1444-1452.
  • 5Bezek JC. Pattern recognition with fuzzy object function algorithms [M]. New York: Plenum, 1981.
  • 6Zhang DQ, Chen SC. Kernel-based fuzzy clustering incorporating spatial constraints for image segmentation//proceedings of the second international conference on machine learning and cybernetics [ C ]. Xi'an, 2003.
  • 7Pham DL. Spatial models for fuzzy clustering[J ]. Comput Vis Imag Understand, 2001, 84: 285-97.
  • 8Mohamed N, Ahmed MN. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data [J ]. IEEE Trans Med Imag, 2002, 21(3): 193-9.
  • 9Alan Liew WC, Yan H. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation [J ]. IEEE Trans Med Imag., 2003, 22(9): 1063-75.
  • 10Zhang DQ, Chen SC. A novel kemelized fuzzy c-means algorithm and segmentation of MRI data[J ]. Artiflntell Med, 2004, 32: 37-52.

共引文献4

同被引文献32

  • 1李海云,李光颖,王筝.一种基于水平集的脊柱MRI图像分割算法的研究[J].北京生物医学工程,2004,23(3):178-180. 被引量:6
  • 2黎俊锋,朱锋峰.基于样本密度的FCM改进算法[J].科学技术与工程,2007,7(4):636-638. 被引量:12
  • 3LLADO X, OLIVER A, CABEZAS M, et al. Segmentation of mul- tiple sclerosis lesions in brain MRI: A review of automated approa- ches[J]. Information Sciences, 2012, 186(1) : 164 - 185.
  • 4GARC[A-LORENZO D, FRANCIS S, NARAYANAN S, et al. Re- view of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging[ J]. Med- ical Image Analysis, 2013, 17(1) : 1 - 18.
  • 5BOUDRAA A O, DEHAK S M R, ZHU Y M, et al. Automated segmentation of multiple sclerosis lesions in muhispectral MR ima- ging using fuzzy clustering[ J]. Computers in Biology and Medicine, 2000, 30(1): 23-40.
  • 6GREENSPAN H, RUF A, GOLDBERGER J. Constrained Gaussian mixture model framework for automatic segmentation of MR brain im- ages[J]. IEEE Transactions on Medical Imaging, 2006, 25(9):1233 - 1245.
  • 7ZHANG D Q, CHEN S C. Clustering incomplete data using kernel- based fuzzy C-means algorithm [ J]. Neural Processing Letters, 2003, 18(3) : 155 - 162.
  • 8ZHANG D Q, CHEN S C. A novel kemelized fuzzy C-means algo- rithm with application in medical image segmentation[ J]. Artificial Intelligence in Medicine, 2004, 32( 1): 37 -50.
  • 9GRAVES D, PEDRYCZ W. Performance of kernel-based fuzzy clus- tering [ J]. Electronics Letters, 2007, 43(25) : 1445 - 1446.
  • 10SHAD D, SUTI'ON J P. Towards automated enhancement, segmen- tation and classification of digital brain images using networks of net- works[J1. Information Sciences, 2001, 138(1): 45-77.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部