摘要
提出了一种针对多发性硬化症病灶T2加权脑部磁共振(MR)图像的分割算法。根据多发性硬化症病灶和脑脊液在T2加权像上同表现为高亮度信号的特点,把模糊C均值分割算法与形态学方法相结合,提出了基于核模糊C均值的多发性硬化症病灶分割算法。该算法首先用改进的核模糊C均值算法做基础分割,再用形态学方法提取出多发性硬化症病灶得到最终分割结果。通过对多发性硬化症模拟脑部MR图像的分割结果表明,算法能够比较准确地分割多发性硬化症病灶。
A novel approach to the segmentation of Multiple Sclerosis(MS) lesions in T2-weighted Magnetic Resonance(MR) images is presented.According to the characteristic of MS lesions show the same high brightness with CerebroSpinal Fluid(CSF) in T2-weighted images,combining the strengths of the kernel fuzzy C-means algorithm and morphology characteristics of MS lesion tissues,the segmentation of MS lesions based on kernel fuzzy C-means algorithm is presented.The modified kernel fuzzy C-means algorithm is used to basic segmentation.Then the MS lesions are extracted by morphological method.The MS segmentation in simulated T2-weighted MR images show that the proposed algorithm can provide a powerful segmentation.
出处
《计算机工程与应用》
CSCD
北大核心
2009年第2期176-178,共3页
Computer Engineering and Applications
基金
国家重点基础研究发展规划(973)No.2003CB716101
广东省科技计划项目(No.2007B010400057)~~
关键词
图像分割
核模糊C均值
多发性硬化症
segmentation of image
kernel fuzzy C-means
multiple sclerosis lesions