期刊文献+

自反Banach空间中锥线性优化问题初始——对偶目标函数水平集的几何性质

The Geometry Property of the Primal-Dual Objective Function Level Sets on Conic Optimization in Reflexive Banach Spaces
下载PDF
导出
摘要 讨论自反Banach空间中的原——对偶锥线性优化问题的目标函数水平集的几何性质.在自反Banach空间中,证明了原目标函数水平集的最大模与对偶目标函数水平集的最大内切球半径几乎是成反比例的. We present a geometric relationship between the primal objective function level sets and the dual objective function level sets, for conic linear optimization. In reflexive Banach spaces, we prove that the maximum norms of the primal objective function level sets are nearly inversely proportional to the maximum inscribed radii of the dual objective function level sets.
作者 王焱 宋文
出处 《应用泛函分析学报》 CSCD 2009年第1期33-38,共6页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(10671050) 黑龙江省杰出青年基金项目(JC200707)
关键词 自反BANACH空间 锥线性优化 对偶 水平集 reflexive Banach spaces conic linear optimization duality level sets
  • 相关文献

参考文献6

  • 1Freund R M. On the primal-dual geometry of level sets in linear and conic optimization[J]. SIAM J Optim, 2003,13 : 1004-1013.
  • 2Bonnans J F, Shapiro A. Perturbation Analysis of Optimizatin Problems, Springer Series in Operations Research[M]. New York:Springer-Verlag, 2000.
  • 3Goffin J L. The relaxation method for solving systems of linear inequalities[J]. Math Oper Res, 1980,5: 388 414.
  • 4Freund R M, Vera J R. Condition-based complexity of convex optimization in conic linear form via the ellipsoid algorithm[J]. SIAM J Optim,1999,10: 155-176.
  • 5Freund R M, Ordonez F. On an extension of condition number theory to non-conic convex optimization[J]. Math Oper Res, 2005,30 : 173-194.
  • 6Shapiro A. On duality theory of conic linear problems[J]. Semi-infinite Programming, Nonconvex Optim Appl, 2001,57 : 135-165.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部