期刊文献+

基于混合行为的蚁群双序列比对方法

Hybrid behavior based ant colony pairwise alignment method
下载PDF
导出
摘要 针对基本蚁群算法在双序列比对中存在的易陷入局部最优解及收敛慢的问题,提出了一种新的基于混合行为的蚁群双序列比对算法,该算法通过增加蚂蚁行为模式来增大搜索空间,并且通过改变信息素更新策略来加快收敛速度。实验表明,该算法得到的解的全局性和收敛速度相对基本蚁群算法都有较大提高。 In order to avoid the stagnation behavior and accelerate the convergence rate of ant colony algorithm,this paper proposes a new hybrid behavior based ant colony pairwise alignment algorithm which expands searching space by increasing ants' behavior models and accelerates the convergence rate by changing pheromone updating policies.Experimental results showed that both optimized global results and convergence rate are much improved compares with ant colony algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第11期150-153,共4页 Computer Engineering and Applications
基金 湖南省自然科学基金No.07JJ5806~~
关键词 蚁群算法 混合行为 双序列比对 ant colony algorithm hybrid behavior pairwise sequence alignment
  • 相关文献

参考文献10

  • 1Dorigo M,Maniezzo V,Colomi A.Ant system:optimization by a colony of coorperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics:Part B, 1996,26( 1 ) :29-41.
  • 2Bullnheimer B,Hartl R,Strauss C.A new rank-based version of the ant system: a computational study[J].Central European J Operations Res Econom, 1999,7(1) :25-38.
  • 3Stutzle T,Hoos H H.MAX-MIN ant system[J].Future Generat Comput Systems 2000,16(8) : 889-914.
  • 4Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans on Evolutionary Comptation, 1997,1 ( 1 ) : 53-66.
  • 5Socha K.ACO for continuous and mixed-variable optimization[C]// Proc of the 4th International Workshop on Ant Colony Optimization and Swarm Intelligence.Brussels,Belgium:Springer-Verlag,2004: 300-301.
  • 6Pei Jian,Han Jia-wei,Mao Run-ying.Closet:an efficient algorithm for mining frequent closed itemsets[C]//Proc of the ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.DaUas, Texas: ACM Press,2000:21-30.
  • 7Alupoaei S,Katkoori S.Ant colony system application to macrocell overlap removal[J].IEEE Trans on Very Large Scale Interation(VL- SI)Systems, 2004,12(10) : 1118-1122.
  • 8梁栋,霍红卫.自适应蚁群算法在序列比对中的应用[J].计算机仿真,2005,22(1):100-102. 被引量:20
  • 9Jangam S R,Chakraborti N.A novel method for alignment of two nucleic acid sequences using ant colony optimization and genetic algorithms[J].Applied Soft Computing, 2007 ( 7 ) : 1121 - 1130.
  • 10赛图宝J,梅丹尼斯J.计算分子生物学导论[M].北京:科学出版社,2004.

二级参考文献5

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部