期刊文献+

基于小波变换和支持向量机的音频分类 被引量:5

Audio classification based on wavelet transform and support vector machine
下载PDF
导出
摘要 音频特征提取是音频分类的基础,而音频分类又是内容的音频检索的关键。综合分析了语音和音乐的区别性特征,提出一种基于小波变换和支持向量机的音频特征提取和分类的方法,用于纯语音、音乐、带背景音乐的语音以及环境音的分类,并且评估了新特征集合在SVM分类器上的分类效果。实验结果表明,提出的音频特征有效、合理,分类性能较好。 Feature extraction is the foundation of audio classification,while audio classification is a key technology of content based audio retrieval.In this paper,discriminating features between speech and music are analyzed,the work on audio feature extraction and classification based on wavelet transform and Support Vector Machine (SVM) is presented.h is used to classify audio into pure speech,music,speech with music and environment sounds.The performance of some new proposed feature is evaluated. The experiments results show that the feature selected are effective for audio classification,and the classification accuracy is good.
作者 郑继明 俞佳
出处 《计算机工程与应用》 CSCD 北大核心 2009年第11期158-161,共4页 Computer Engineering and Applications
基金 重庆市教育委员会科学技术研究项目资助No.KJ080524~~
关键词 小波变换 特征提取 音频分类 支持向量机 wavelet transform feature extraction audio classification Support Vector Machine (SVM)
  • 相关文献

参考文献7

  • 1Wold E,Blum T,Keislar D,et al.Content-based classification,search and retrieval of audio[J].IEEE Multimedia, 1996,3(3):27-36.
  • 2Liu Z,Huang J,Wang Y,et al.Audio feature extraction and analysis for scene classification[C]//IEEE Signal Processing Society 1997 Workshop on Multimedia Signal Processing,New Jersey,USA, 1997: 23-25.
  • 3Foote J.Content-based retrieval of music and audio[C]//Kuo C C J.Multimedia Storage and Arehiving Systems Ⅱ,Proceedings of SPIE, 1997,3229: 138-147.
  • 4杨欣,费树岷,陈丽娟.基于小波子空间、支持向量机和模糊积分的信号多类分类算法[J].信息与控制,2007,36(2):211-217. 被引量:1
  • 5Esmaili S,Krishnan S,Raahemifar K.Content based audio classification and retrieval using joint time-frequency analysis [C]//Proceedings of the IEEE International Conference on Acoustics, Speech,and Signal Processing(ICASSP'04),2004,5:17-21.
  • 6卢坚,陈毅松,孙正兴,张福炎.基于隐马尔可夫模型的音频自动分类[J].软件学报,2002,13(8):1593-1597. 被引量:47
  • 7苏毅,吴文虎,郑方,等.基于支持向量机的语音识别研究[C].第六届全国人机语音通讯学术会议,深圳,2001.

二级参考文献31

  • 1徐勋华,王继成.支撑向量机的多类分类方法[J].微电子学与计算机,2004,21(10):149-152. 被引量:27
  • 2史泽林,李德强,黄莎白.基于模糊准则的小波特征选择在人脸识别中的应用[J].信息与控制,2005,34(1):50-53. 被引量:2
  • 3鄢卉,李仁发.语音信号倒谱特征提取建模与仿真[J].系统仿真学报,2005,17(7):1774-1778. 被引量:8
  • 4[1]Feiten, B., Frank, R., Ungvary, T. Organization of sounds with neural nets. In: Proceedings of the 1991 International Computer Music Conference, International Computer Music Association. San Francisco, 1991. 441~444.
  • 5[2]Feiten, B., Günzel, S. Automatic indexing of a sound database using self-organizing neural nets. Computer Music Journal, 1994,18(3):53~65.
  • 6[3]Wold, E., Blum, T., Keislar, D., et al. Content-Based classification, search and retrieval of audio. IEEE Multimedia Magazine, 1996,3(3):27~36.
  • 7[4]Foote, J.T. Content-Based retrieval of music and audio. Multimedia Storage and Archiving Systems II, 1997,32(29):138~147.
  • 8[5]Li, S.Z. Content-Based classification and retrieval of audio using the nearest feature line method. IEEE Transactions on Speech and Audio Processing, 2000,8(5):619~625.
  • 9[6]Li, S.Z., Guo, Guo-dong. Content-Based audio classification and retrieval using SVM learning. In: Proceedings of the 1st IEEE Pacific-Rim Conference on Multimedia. 2000.
  • 10[7]Jiang, Hao, Lin, Tony, Zhang, Hong-jiang. Video segmentation with the support of audio segmentation and classification. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2000), Vol 3. NY: IEEE, 2000. 1507~1510.

共引文献53

同被引文献66

引证文献5

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部