期刊文献+

Simulation Study of Shock Reaction on Porous Material 被引量:1

Simulation Study of Shock Reaction on Porous Material
下载PDF
导出
摘要 Direct modeling of porous materials under shock is a complex issue. We investigate such a system via the newly developed material-point method. The effects of shock strength and porosity size are the main concerns. For the same porosity, the effects of mean-void-size are checked. It is found that local turbulence mixing and volume dissipation are two important mechanisms for transformation of kinetic energy to heat. When the porosity is very small, the shocked portion may arrive at a dynamical steady state; the voids in the downstream portion reflect back rarefactive waves and result in slight oscillations of mean density and pressure; for the same value of porosity, a larger mean-void-size makes a higher mean temperature. When the porosity becomes large, hydrodynamic quantities vary with time during the whole shock-loading procedure: after the initial stage, the mean density and pressure decrease, but the temperature increases with a higher rate. The distributions of local density, pressure, temperature and particle-velocity are generally non-Gaussian and vary with time. The changing rates depend on the porosity value, mean-void-size and shock strength. The stronger the loaded shock, the stronger the porosity effects. This work provides a supplement to experiments for the very quick procedures and reveals more fundamental mechanisms in energy and momentum transportation.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第4期691-699,共9页 理论物理通讯(英文版)
基金 supported by Science Foundations of Laboratory of Computational Physics, China Academy of Engineering Physics under Grant No. 2007b09012 National Natural Science Foundation of China under Grant Nos. 10702010 and 10775018
关键词 shock wave porous material equation of state 多孔材料 休克 反应 仿真 平均温度 冲击强度 平均密度 粒子速度
  • 相关文献

参考文献26

  • 1D.B. Reisman, W.G. Wolfer, A. Elsholz, and M.D. Furnish, J. Appl. Phys. 93 (2003) 8952.
  • 2E. Dekel, S. Eliezer, Z. Henis, E. Moshe, A. Ludmirsky, and I.B. Goldberg, J. Appl. Phys. 84 (1998) 4851.
  • 3R.W. Minich, J.U. Cazamias, M. Kumar, and A.J. Schwartz, Metall. Mater. Trans. A 35 (2004) 2663.
  • 4N.K. Bourne, Shock Waves 11 (2002) 447.
  • 5R.K. Linde and D.N. Schmidt, J. Appl. Phys. 37 (1966) 3259.
  • 6R.R. Boade, J. Appl. Phys. 40 (1969)3781.
  • 7B.M. Butcher, J. Appl. Phys. 45 (1974) 3864.
  • 8S. Bonnan and P.L. Hereil, J. Appl. Phys. 83 (1998) 5741.
  • 9G.T. Gray Ⅲ, N.K. Bourne, and J.C.F. Milett, J. Appl. Phys. 94 (2003) 6430.
  • 10A.D. Resnyansky and N.K. Bourne, J. Appl. Phys. 95 (2004) 1760.

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部