期刊文献+

一类奇摄动微分—差分反应扩散方程(英文) 被引量:17

A Class of Singularly Perturbed Differential-difference Reaction Diiffusion Equations
原文传递
导出
摘要 奇摄动问题有很强的自然科学的背景,它在生态环境、大气物理、海洋科学、催化反应、激波和量子物理中都有很广泛的应用.本文研究了一类带有小延迟的微分—差分反应扩散方程初值问题.在适当的条件下,利用奇摄动伸长变量法,构造了问题的形式渐近解.再用微分不等式理论证明了解的一致有效性. The singularly perturbed problems are very strong background in the natural science. There are general applications in the entironment, atmospheric physics, oceanic science, catalyzed reaction, shock wave and quantum physics. In this paper, a class of differentialdifference reaction diffusion equations with a small time delay is considered. Under suitable conditions and by using method of the stretched variable, the formal asymptotic solution is constructed. And then, by using the theory of differential inequalities the uniformly validity of solution is proved.
作者 莫嘉琪
出处 《数学进展》 CSCD 北大核心 2009年第2期227-232,共6页 Advances in Mathematics(China)
基金 Supported by the National Natural Science Foundation of China(No.40676016) the National Key Project for Basics Research(2003CB415101-03 and 2004CB418304) the Key Project of the Chinese Academy of Sciences(KZCX3-SW-221) in part by E-Institutes of Shanghai Municipal Education Commission(N.E03004).
关键词 非线性 反应扩散 奇摄动 时滞 渐近解 nonlinear reaction diffusion singular perturbation time delay asymptotic solution
  • 相关文献

参考文献9

二级参考文献112

共引文献296

同被引文献83

引证文献17

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部