期刊文献+

一种新的混合蚁群算法 被引量:3

A New Hybrid Ant Colony Algorithm
原文传递
导出
摘要 设计一种新的混合蚁群算法,该算法以一种新的加权二进制蚁群算法为基础,将分布估计算法PB IL的概率分布模型用来指导蚂蚁路径的选择,同时对不同位置的蚂蚁采用加权系数来控制信息素散发量,根据信息素得到的转移概率、PB IL的模型概率及二者融合的概率来产生新的个体,保证了个体的多样性,从而提高了算法的快速性和全局最优解的搜索能力.通过测试函数优化表明该算法具有良好的收敛速度和稳定性,改善了蚁群算法容易陷入局部最优而早熟的缺陷. A kind of new hybrid ant colony algorithm is designed. It uses a new binary ant colony algorithm with weight factor as foundation. Ants choose the route with the guidance of model probability of Population based incremental learning (PBIL) and control measure of pheromone emanating by weight factor. The new population are produced by probability model of PBIL, transfer probability of ants pheromone and theirs associative probability so that population polymorphism is ensured and the optimal convergence rate and the ability of breaking away from the local minima are improved. Optimization simulation resutts based on typical. functions show that the hybrid algorithm has the speedy convergence rate and stability.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第6期154-161,共8页 Mathematics in Practice and Theory
基金 河北省自然科学基金(F2008001166)
关键词 蚁群算法 分布估计算法 PBIL 概率模型 Ant colony algorithm (ACA) Estimation of distribution algorithm (EDA) Population based incremental learning (PBIL) Model probability
  • 相关文献

参考文献12

二级参考文献164

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 3玄光南,遗传算法与工程设计,2000年
  • 4Song Y H,Electric Power Systems Research,1999年,52卷,115页
  • 5McMullen P R. An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives [ J]. Artificial Intelligence in Engineering, 2001,15(3) :309 -317.
  • 6Coksmi A, Dorigo M, Maniezzo V, et al. Ant system for jobshop scheduling [J]. Belgian Journal Operations Research Statistic Computation Science, 1994,34 (11) :39 - 53.
  • 7Maniezzo V, Carbonaro A. An ant heuristic for the frequency assignment problem [ J ]. Future Generation Computer System,2000,16(8) :927 -935.
  • 8Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies [ A]. Proceedings of the IEEE Conference on Evolutionary Computation [ C]. 1996. 622 -627.
  • 9Monarche N, Venturini G, Slimane M. On how pachycondylla apicalis ants suggests a new algorithm [ J ]. Future Generation Computer System, 2000,16 (8) :937 - 946.
  • 10Stutzle T, Hoos H H. MAX-MIN ant system [ J]. Future Generation Computer Systems, 2000,16 (8) :889 - 914.

共引文献428

同被引文献32

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部