期刊文献+

多资源公平调度器在Hadoop中的实现 被引量:3

A Muti-resource Fair Scheudler of Hadoop
下载PDF
导出
摘要 目前Hadoop的作业调度算法都是将系统中的多类资源抽象成单一资源,分配给作业的资源均是节点资源中固定大小的一部分,称为插槽。这类基于插槽的算法没有考虑到系统多资源的差异性,忽略了不同类型作业对资源的不同需求,因此导致系统在吞吐量和平均作业完成时间上性能低下。本文研究了多资源环境下公平调度算法在Hadoop中的实现,设计了一种多资源公平调度器MFS(Multi-resource Fair Scheduler)。MFS采用了DRF(Dominant Resource Fairness)调度思想,使用需求向量来描述作业对各类资源的需求,并按照需求向量中各资源的大小给作业分配资源。MFS能更加充分有效地使用系统的各类资源,并能满足不同类型作业对资源的不同需求。实验表明相比于基于插槽的Fair Scheduler与Capacity Scheduler,MFS提高了系统的吞吐量,降低了平均作业完成时间。 Hadoop job schedulers typically use a single resource abstraction and resources are allocated at the level of fixed-size partition of the nodes,called slots.These job schedulers ignore the different demands of jobs and fair allocation of multiple types of resources,leading to poor performance in throughput and average job completion time.This paper studies and implements a Muti-resource Fair Scheduler(MFS) in Hadoop.MFS adopts the idea of Dominant Resource Fairness(DRF).It uses a demand vector to describe demands for resources of a job and allocates resources to the job according to the demand vector.MFS uses resources more efficiently and satisfies multiple jobs with heterogeneous demands for resources.Experiment results show that MFS has higher throughput and shorter average job completion time compared to Hadoop slot-based Fair Scheduler and Capacity Scheduler.
作者 马肖燕 洪爵
出处 《集成技术》 2012年第3期66-71,共6页 Journal of Integration Technology
关键词 HADOOP 作业调度算法 插槽 多资源 公平 Hadoop job scheduling algorithm slot muti-resource fair
  • 相关文献

参考文献11

  • 1M. Zaharia,A. Konwinski,A.D. Joseph,R. Katz,I. Stoica.Improving mapreduce performance in heterogeneous environments. Proc 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2008 . 2008
  • 2J. Polo,D. Carrera,Y. Becerra,J. Torres,E. Ayguade,M. Steinder,I. Whalley.Performance-driven task co-scheduling for Mapreduce environments. Proceedings of Network Operations and Management Symposium (NOMS) . 2010
  • 3Matei Zaharia,Dhruba Borthakur,Joydeep Sen Sarma.Delay Scheduling:A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling. Proceedings of EuroSys’’10 . 2010
  • 4Apache Software Foundation.Capacity Scheduler. http://hadoop.apache.org/common/docs/current/capacity_scheduler.html .
  • 5Apache Software Foundation.FairScheduler. http://hadoop.apache.org/mapreduce/docs/r0.21.0/fair_scheduler.html .
  • 6Qin A,Tu D D,Shu C C,et al.XConveryer:guarantee hadoop throughput via lightweight OS-level virtualization. International Conference on Grid and Cooperative Computing . 2009
  • 7Ghodsi A,Zaharia M,Hindman B,et al.Dominant resource fairness:fair allocation of multiple resource types. USENIX Symposium on Networked Systems Design and Implementation Conference . 2011
  • 8Yong M,Garegrat N,Mohan S.Towards a resource aware scheduler in hadoop. The IEEE International Conference on Web Services . 2009
  • 9Kc K,Anyanwu K.Scheduling hadoop jobs to meet deadlines. International Conference on Cloud Computing . 2010
  • 10Hindman B,Konwinski A,Zaharia M,et al.Mesos:a platform for fine-grained resource sharing in the data center s. USENIX Symposium on Networked Systems Design and Iplementation . 2011

同被引文献20

  • 1Staples G. TORQUE resource manager[ C ]. Proceed- ings of the 2006 ACM/IEEE conference on Supercom- puting. ACM, 2006: 8.
  • 2Maui. [ EB/OL]. (2014 - 02 - 15 ). http://www. adaptivecomputing, corn/products/open - source/ maul/.
  • 3Apache Hadoop. [ EB/OL]. ( 2005 ). http ://hadoop. apache, org/.
  • 4Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters[ C]. Proc. of the 6th con- ference on Symposium on Operating Systems Design & Implementation. San Francisco. CA. USA, ACM Press, 2004.
  • 5Hindman B, Konwinski A, Zaharia M, et al. Mesos : A platform for fine - grained resource sharing in the data center[ C ]. Proceedings of the 8th USENIX con- ference on Networked systems design and implementa-tion. 2011 22 -22.
  • 6Ghodsi A, Zaharia M, Hindman B, et al. Dominant resource fairness: fair allocation of multiple resource types [ C ]. USENIX NSDI. (2011 ).
  • 7Parkes D C, Procaccia A D, Shah N. Beyond domi- nant resource fairness : extensions, limitations, and indivisihilities[ C]. Proceedings of the 13th ACM Con- ference on Electronic Commerce. ACM, 2012 : 808 - 825.
  • 8Zaharia M, Borthakur D, Sen Sarma ], et al. Delay scheduling: a simple technique for achieving localityand fairness in cluster scheduling [ C ]. Proceedings of the 5th European conference on Computer systems. ACM, 2010:265-278.
  • 9Foley D K. Resource allocation and the public sector [ J ]. YALE ECON ESSAYS, VOL 7, NO 1, PP 45 - 98, SPRING 1967. 7 FIG, 13 REF., 1967.
  • 10Li W D, Liu H M, Deng Z, et al. The ottline soft- ware for the BESIlI experiment [ C ]. Proceeding of CHEP. 2006.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部