期刊文献+

一种新型多节隔板-平板式光生物反应器的数值和实验研究 被引量:11

Numerical and Experimental Investigation of a Novel Flat-Photobioreactor with Multistage-Separator
下载PDF
导出
摘要 光是影响光生物反应器培养效率的最主要因素之一。而在一定的外部光强下,光生物反应器内部的混合状况对微藻细胞生长有重要影响。采用CFD(Computational Fluid Dynamics)模型对一种新型多节隔板-平板式光生物反应器在不同通气量下的流场分布进行了模拟并与PIV(Particle Image Velocimetry)测量结果进行比较,结果表明CFD模型可用于光生物反应器流场的模拟;利用CFD模型对不同隔板节数的平板式光生物反应器的内部流场进行了模拟,对光照方向混合进行定量研究,并通过分析光照方向径向速度U、下降通道体积平均湍动能ADT、流体(藻液)绕隔板循环一周所用时间tc、下降通道(光区)停留时间占藻液绕隔板循环一周所用时间的比例ε四个参数来优化光生物反应器的隔板节数。理论分析表明,三节隔板-平板式光生物反应器为最佳选择,并通过球等鞭金藻3011培养实验对此进行了验证。 Light is one of the most important factors affecting the photoautotrophic cultivation of microalgae, and the hydrodynamic performance, especially mixing, has great effects on the microalgae growth in photobioreactor (PBR) under a certain exterior light intensity. The hydrodynamic performance of a novel flat PBR with multistage-separator was simulated at different aerating rates by using computation fluid dynamics (CFD) model. The experimental results of the Particle Image Velocimetry (PIV) validate that the CFD model can be used to simulate the hydrodynamic performance of the flat-PBR with multistage-separator well. Based on this result, CFD simulation was applied to compare the hydrodynamic performance of the PBR with different separator numbers, and their mixing effects in illumination direction were investigated quantitatively. The stage numbers of the separator of PBR was optimized by analyzing its effects on radial speed (U), average turbulence kinetic energy (ADT), cycle time of PBR (to) and the ratio of cycle time of the downer channel to cycle time of PBR (ε). The theoretical analysis results show that the PBR with three-stage separator is optimal, and this prediction was also confirmed by the experimental results oflsochrysis galbana 3011 cultivation.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2009年第2期263-269,共7页 Journal of Chemical Engineering of Chinese Universities
基金 "十一五"国家科技支撑计划项目(2006BAD09A12) "十一五"863计划项目(2007AA09Z419)和(2007AA02Z209)
关键词 CFD PIV 光生物反应器 多节 球等鞭金藻3011 径向速度 CFD PIV photobioreactor multistage lsochrysis galbana 3011 radial speed
  • 相关文献

参考文献19

  • 1Chen F. High cell density culture of microalgae in heterotrophie growth [J]. Trends Biotechnol, 1996, 14(11): 421-426.
  • 2Negoro M, Shioji N, Miyarnoto K et al. Growth of microalgae in high CO2 gas and effects of SOx and NOx [J], Appl Biochem Biotech, 1991, (28-29): 877-886.
  • 3Yoshihara K, Nagase H, Eguchi K et al. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor [J]. J Ferment Bioeng, 1996, 82(4): 351-354.
  • 4Vilchez C, Garbayo I, Lobato M Vet al. Microalgae-mediated chemicals production and wastes removal [J]. Enzyme Microb Technol,1997, 20(8): 562-572.
  • 5Pulz O, Scheibenbogen K. Photobioreactors : design and performance with respect to light energy input [J]. Adv Biochem Eng Biotech, 1998, 59:123-152.
  • 6Richmond A. Principles for attaining maximal microalgal productivity in photobioreactors: an overview [J]. Hydrobiology, 2004, 512(1-3): 33-37.
  • 7Maria J B, Marcel J, Nienke H et al. Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency [J]. Biotech Bioeng, 2003, 82(2): 170-179.
  • 8Degen J, Uebele A, Retze Aet al. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light Effect [J]. J Biotech, 2001, 92(2): 89-94.
  • 9Ugwu C U, Ogbonna J C, Tanaka H. Light/dark cyclic movement of algal culture (Synechocystis aquatilis) in outdoor inclined tubular photobioreactor equipped with static mixers for efficient production of biomass [J]. Biotech Lett, 2005, 27(2): 75-78.
  • 10Ugwu C U, Ogbonna J C, Tanaka H. Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers [J]. Appl Microbioi Biotech, 2002, 58(5): 600-607.

二级参考文献9

  • 1Brucato A, Ciofalo M, Grisafi F, et al. On the simulation of stirred tank reactors via computational fluid dynamics [J]. Chemical Engineering Science, 2000, 55(2): 291-302.
  • 2Luo H, Svendsen H. Theoretical model for drop and bubble break-up in turbulent dispersions [J]. AIChE Journal, 1996, 42(5):1225-1233.
  • 3Prince M J, Blanch H W. Bubbly coalescence and break-up in air-sparged bubble columns [J]. AIChE Journal, 1990, 36(10):1485-1499.
  • 4Lo S, Bagatin R, Masi M. The development of a CFD analysis and design tool for air-lift reactors [A]. Proceeding of the SAIChE 2000 Conference [C], Secunda, South Africa, 2000.
  • 5Lahey R, Lopez de Bertodano M, Jones O. Phase distribution in complex geometry conduits [J]. Nuclear Engineering and Design,1993, 141(1-2): 177-201.
  • 6Launder B E, Spalding D B. Mathematical Models of Turbulence [M]. London, GB: Academic Press, 1972.
  • 7Sato Y, Sekoguchi K. Liquid velocity distribution in two-phase bubbly flow [J]. International Journal of Multiphase Flow, 1975,2(1): 79-95.
  • 8卢泽民,吴守一,朱金华.气体环流生化反应器的研究及进展[J].江苏理工大学学报(自然科学版),1999,20(1):8-11. 被引量:7
  • 9周国忠,施力田,王英琛.搅拌槽内近桨区流动场的数值研究[J].高校化学工程学报,2002,16(1):17-22. 被引量:29

共引文献7

同被引文献294

引证文献11

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部