期刊文献+

Reaction Kinetics of LiOH Improved with Composite Silica Gel of Lanthanum Chloride for Absorbing CO_2

Reaction Kinetics of LiOH Improved with Composite Silica Gel of Lanthanum Chloride for Absorbing CO_2
下载PDF
导出
摘要 A static method was employed to study the reaction kinetics of anhydrous lithium hydroxide (LiOH) and CO2. The reaction generated water was absorbed with the composite silica gel of lanthanum chloride to make the experiment repeatable. At the reaction temperature of 15~60 ℃ and initial CO2 pressures of 25~100 kPa, the reaction rate of anhydrous LiOH and CO2 decreased slightly with the reduction of initial CO2 pressure and the rise of reaction temperature, indicating that the reaction activation energy of LiOH and CO2 was negative and close to zero. During the middle period (1~5 min) of the isothermal reaction, the ratio of reaction efficiency was approximately the power of 0.4 to that of initial CO2 pressures. As anhydrous LiOH reacted to CO2, the solid product Li2CO3 covered on the surface of LiOH was not compact, so it did not hinder the subsequent reaction of absorbing the CO2 gas. The reaction kinetics of anhydrous LiOH and CO2 obeyed the Erofeev′s model. A static method was employed to study the reaction kinetics of anhydrous lithium hydroxide (LiOH) and CO2. The reaction generated water was absorbed with the composite silica gel of lanthanum chloride to make the experiment repeatable. At the reaction temperature of 15~60 ℃ and initial CO2 pressures of 25~100 kPa, the reaction rate of anhydrous LiOH and CO2 decreased slightly with the reduction of initial CO2 pressure and the rise of reaction temperature, indicating that the reaction activation energy of LiOH and CO2 was negative and close to zero. During the middle period (1~5 min) of the isothermal reaction, the ratio of reaction efficiency was approximately the power of 0.4 to that of initial CO2 pressures. As anhydrous LiOH reacted to CO2, the solid product Li2CO3 covered on the surface of LiOH was not compact, so it did not hinder the subsequent reaction of absorbing the CO2 gas. The reaction kinetics of anhydrous LiOH and CO2 obeyed the Erofeev′s model.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期143-147,共5页 稀土学报(英文版)
基金 Project supported bythe Beijing Education Committee Scientific Plan Fund (KM200711417006)
关键词 LANTHANUM CHLORIDE ANHYDROUS LITHIUM HYDROXIDE carbon dioxide KINETICS lanthanum chloride anhydrous lithium hydroxide carbon dioxide kinetics
  • 相关文献

参考文献2

二级参考文献4

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部