摘要
A cycle model of an irreversible heat engine working with harmonic systems is established in this paper. Based on the equation of motion of an operator in the Heisenberg picture and semi-group approach, the first law of thermodynamics for a harmonic system and the time evolution of the system are obtained. The general expressions for several important parameters, such as the work, efficiency, power output, and rate of entropy production are derived. By means of numerical analysis, the optimally operating regions and the optimal values of performance parameters of the cycle are determined under the condition of maximum power output. At last, some special cases, such as high temperature limit and frictionless case, are dis-cussed in brief.
A cycle model of an irreversible heat engine working with harmonic systems is established in this paper. Based on the equation of motion of an operator in the Heisenberg picture and semi-group approach, the first law of thermodynamics for a harmonic system and the time evolution of the system are obtained. The general expressions for several important parameters, such as the work, efficiency, power output, and rate of entropy production are derived. By means of numerical analysis, the optimally operating regions and the optimal values of performance parameters of the cycle are determined under the condition of maximum power output. At last, some special cases, such as high temperature limit and frictionless case, are discussed in brief.
基金
the National Natural Science Foundation of China(Grant No. 10465003)
the Natural Science Foundation of Jiangxi Province(Grant No. 0412011)