期刊文献+

ANALYSIS OF MOVING MESH METHODS BASED ON GEOMETRICAL VARIABLES

ANALYSIS OF MOVING MESH METHODS BASED ON GEOMETRICAL VARIABLES
原文传递
导出
摘要 Examines the moving mesh methods for solving one-dimensional time dependent partial differential equations. Introduction of the differential-algebraic formulations based on geometrical variables; Investigation of the well-posedness of the numerical approach; Discussion of some detailed numerical procedures. Examines the moving mesh methods for solving one-dimensional time dependent partial differential equations. Introduction of the differential-algebraic formulations based on geometrical variables; Investigation of the well-posedness of the numerical approach; Discussion of some detailed numerical procedures.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2001年第1期41-54,共14页 计算数学(英文)
基金 This research was supported by Hong Kong Baptist University, Hong Kong Research Grants Council,Special Funds for Major State B
关键词 moving mesh methods partial differential equations adaptive grids moving mesh methods partial differential equations adaptive grids
  • 相关文献

参考文献18

  • 1Beale,J.T.,Hou,T.,Lowengrub,J.Growth rates for the linearized motion of fluid interfaces away from equilibrium. Communications in Pure Applied Mathematics . 1993
  • 2Carlson,N.N.,Miller,K.Design and application of a gradient-weighted moving finite element code II: in two dimensions. SIAM Journal on Scientific and Statistical Computing . 1998
  • 3Carlson,N.N.,Miller,K.Design and application of a gradient-weighted moving finite element code I: in one dimension. SIAM Journal on Scientific and Statistical Computing . 1998
  • 4Coyle I M,Flaherty I E,Ludwig R.On the Stability ofMesh Equidistribution Strategies for Time DependentPartial Differential Equations. Journal of Computational Physics . 1986
  • 5De,Boor,C. Good approximation by splines with variable knots. II. Conference on the Numerical Solution of Differential Equations . 1973
  • 6B.Fornberg,G.B.Whitham.A Numerical and Theoretical Study of Certain Nonlinear Wave Phenomena.J. Fluid. Mech, Trans R. Soc. London . 1978
  • 7Linz,P. Analytical and Numerical Methods for Volterra Equations . 1985
  • 8K. Miller.Moving finite element. II. SIAM Journal on Numerical Analysis . 1981
  • 9Miller K.Ageometrical-mechanical interpolation of gradient-weighted moving finite elements. SIAMJournal on Numeri-cal Analysis . 1997
  • 10W Huang,Y Ren,RD Russell.Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principle. SIAM Journal on Numerical Analysis . 1994

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部