摘要
If a vector valued function space with a Hausdorff locally convex topology has a property such that every closed strongly bounded subset is compact, then we name this property Helly's property. In this paper, we show a class of vector valued function spaces with Helly's property and consider convergence of vector measures and best approximations in function spaces in this class.
If a vector valued function space with a Hausdorff locally convex topology has a property such that every closed strongly bounded subset is compact, then we name this property Helly's property. In this paper, we show a class of vector valued function spaces with Helly's property and consider convergence of vector measures and best approximations in function spaces in this class.