摘要
It is a challenge to track the maneuvering targets with noise disturbance and unknown dynamics. In this paper, an adaptive recurrent neural network tracking filter (ARNNF) for use in maneuvering target tracking was provided. The scheme is based on recurrent neural networks of which the recurrence provides a potentially unlimited memory depth adjusted by the network adaptively ( i.e. , it finds the best duration to represent the input signals past), and thus can actually capture the dynamics of the system that produced a temporal signal. On the other hand, recurrent neural network can approximate arbitrary nonlinear functions in L 2 space. The theoretical analysis indicates that the ARNNF can track the maneuvering targets with optimal filtering performance. Comparisons with IMM and AIMM algorithm show that ARNNF has better performance, and furthermore the ARNNF does not rely on the assumption with the known maneuvering target models, measurement noise and system noise.
It is a challenge to track the maneuvering targets with noise disturbance and unknown dynamics. In this paper, an adaptive recurrent neural network tracking filter (ARNNF) for use in maneuvering target tracking was provided. The scheme is based on recurrent neural networks of which the recurrence provides a potentially unlimited memory depth adjusted by the network adaptively ( i.e. , it finds the best duration to represent the input signals past), and thus can actually capture the dynamics of the system that produced a temporal signal. On the other hand, recurrent neural network can approximate arbitrary nonlinear functions in L 2 space. The theoretical analysis indicates that the ARNNF can track the maneuvering targets with optimal filtering performance. Comparisons with IMM and AIMM algorithm show that ARNNF has better performance, and furthermore the ARNNF does not rely on the assumption with the known maneuvering target models, measurement noise and system noise.