期刊文献+

BOUNDED LINEAR OPERATORS THAT COMMUTE WITH SHIFTS ARE SCALED IDENTITY 被引量:4

BOUNDED LINEAR OPERATORS THAT COMMUTE WITH SHIFTS ARE SCALED IDENTITY
下载PDF
导出
摘要 We prove that every bounded linear operator on Lp?Lp(R'),s≥1 and 1≤p<∞, that commutes with both the spatial shift operator and the phase shift operator must be a constant multiple of the identity. We also apply this result to identify analysis-synthesis dual Lq-Lp paris and to characterize bi-orthogonal unconditional bases of Lq-Lp, where p?1+q?1=1. We prove that every bounded linear operator on Lp?Lp(R'),s≥1 and 1≤p<∞, that commutes with both the spatial shift operator and the phase shift operator must be a constant multiple of the identity. We also apply this result to identify analysis-synthesis dual Lq-Lp paris and to characterize bi-orthogonal unconditional bases of Lq-Lp, where p?1+q?1=1.
机构地区 [
出处 《Analysis in Theory and Applications》 1999年第3期1-12,共12页 分析理论与应用(英文刊)
  • 相关文献

同被引文献7

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部