期刊文献+

Microstructures and properties of Si_3N_4/TiN ceramic nano-multilayer films

Microstructures and properties of Si_3N_4/TiN ceramic nano-multilayer films
下载PDF
导出
摘要 The polycrystalline Si3N4/TiN ceramic nano-multilayer films have been synthesized on Si substrates by a reactive magnetron Sputtering technique, aiming at investigating the effects of modulation ratio and modulation period on the microhardness and to elucidate the hardening mechanisms of the synthesized nanomultilayer films. The results showed that the hardness of Si3N4/TiN nano-multilayers is affected not only by modulation period, but also by modulation ratio. The hardness reaches its maximum value when modulation period equa1s a critical value λ0, which is about 12 nm with a modulation ratio of 3: 1. The maximum hardness value is about 40% higher than the value calculated from the rule of mixtures. The hardness of nano-multilayer thin films was found to decrease rapidly with increasing or decreasing modulation period from the Point of λ0. The microstructures of the nano-multilayer films have been investigated using XRD and TEM. Based on experimental results, the mechanism of the superhardness in this system was proposed. The polycrystalline Si3N4/TiN ceramic nano-multilayer films have been synthesized on Si substrates by a reactive magnetron Sputtering technique, aiming at investigating the effects of modulation ratio and modulation period on the microhardness and to elucidate the hardening mechanisms of the synthesized nanomultilayer films. The results showed that the hardness of Si3N4/TiN nano-multilayers is affected not only by modulation period, but also by modulation ratio. The hardness reaches its maximum value when modulation period equa1s a critical value λ0, which is about 12 nm with a modulation ratio of 3: 1. The maximum hardness value is about 40% higher than the value calculated from the rule of mixtures. The hardness of nano-multilayer thin films was found to decrease rapidly with increasing or decreasing modulation period from the Point of λ0. The microstructures of the nano-multilayer films have been investigated using XRD and TEM. Based on experimental results, the mechanism of the superhardness in this system was proposed.
出处 《中国有色金属学会会刊:英文版》 CSCD 1999年第4期764-767,共4页 Transactions of Nonferrous Metals Society of China
关键词 Si<sub>3</sub>N<sub>4</sub>/TiN multilayer films MICRO HARDNESS MICRO structures Si_3N_4/TiN multilayer films micro hardness micro structures
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部