摘要
The alteration of dislocation arrays in the process of strain hardening for normalized carbon steel 1035 was investigated by transmission electron microscopy. At primary stage the separated dislocation lines tend to form tangles and networks, dislocation cells appear at the secondary stage, the amount of the cells increases significantly, its average dimension does not change and the cell walls become clear. The third stage of strain hardening was observed in the process from necking to fracture and shows a straight line segment on the lg σ -lg ε curve, at this time the dislocation cells become smaller and tend to form band structure.
The alteration of dislocation arrays in the process of strain hardening for normalized carbon steel 1035 was investigated by transmission electron microscopy. At primary stage the separated dislocation lines tend to form tangles and networks, dislocation cells appear at the secondary stage, the amount of the cells increases significantly, its average dimension does not change and the cell walls become clear. The third stage of strain hardening was observed in the process from necking to fracture and shows a straight line segment on the lg σ -lg ε curve, at this time the dislocation cells become smaller and tend to form band structure.