摘要
The accurate mathematical models for complicated structures are verydifficult to construct.The work presented here provides an identification method for estimating the mass, damping , and stiffness matrices of linear dynamical systems from incompleteexperimental data. The mass, stiffness, and damping matrices are assumed to be real,symmetric, and positive definite. The partial set of experimental complex eigenvalues and corresponding eigenvectors are given. In the proposed method the least squaresalgorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters. several illustrative examples, are presented to demonstrate the reliability of the proposed method .It is emphasized thatthe mass, damping and stiffness martices can be identified simultaneously.
The accurate mathematical models for complicated structures are verydifficult to construct.The work presented here provides an identification method for estimating the mass, damping , and stiffness matrices of linear dynamical systems from incompleteexperimental data. The mass, stiffness, and damping matrices are assumed to be real,symmetric, and positive definite. The partial set of experimental complex eigenvalues and corresponding eigenvectors are given. In the proposed method the least squaresalgorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters. several illustrative examples, are presented to demonstrate the reliability of the proposed method .It is emphasized thatthe mass, damping and stiffness martices can be identified simultaneously.